透過您的圖書館登入
IP:18.117.70.132
  • 學位論文

氣體輔助軟模壓印技術之研發應用於製作SU-8脊梁式光波導元件

Development and Application of Gas-Assisted Soft Mold Embossing Technology for Fabrication SU-8 Ridge Optical Waveguides

指導教授 : 楊申語

摘要


高分子光波導元件是短距離光通訊產品之關鍵零組件。目前製作高分子光波導元件之方法包括半導體光微影製程、射出成型及熱壓成型,但其製程複雜、設備昂貴,已無法滿足未來光通訊產品低價位、普及化的發展趨勢。因此,本研究主要目的在於開發低成本、高產能及高品質的高分子光波導元件製作技術。 此技術創新之處有兩方面:首先是使用氣體輔助軟模壓印技術來製作光波導元件,利用矽膠(PDMS)翻鑄技術製作出具有波導結構之軟模並輔以剛性載具支撐軟模,可避免壓印結構變及壓印殘留層分佈不均勻之情形;第二是針對SU-8壓印光波導元件使用的設備及製程參數作改良,SU-8具有高結構強度、環境抵抗力佳且對於紅外光波段的光源具有高穿透性,非常適合用來製作波導元件以搭配光纖作光訊號傳輸之應用。 本論文進一步開發CNP(A combined nanoimprint and photolithography patterning technique)壓印軟模,可分為碳粉式CNP軟模、光罩式CNP 軟模及Lift-off式CNP軟模。於PDMS軟模之突出結構上製作金屬擋罩層以作為壓印模具之用,期能達到壓印後快速去除光阻殘留層之效果,以應用於製作波導元件或其它無光阻殘留層之壓印結構複製,甚至應用在曲面壓印。 實驗結果顯示,在適當的壓印壓力與載具設計之下,可成功製作出94μm(寬)× 69μm(高)× 4cm(長)的脊樑式波導元件,其元件之表面粗糙度為5.591nm,在1310nm波段其傳播平均損耗為0.88dB/cm。

並列摘要


Abstract Polymer optical waveguides are important components for Short-haul optical communication. Several methods of fabricating polymer waveguides have been reported, including photolithography, polymer injection molding and hot embossing, etc. Photolithography is complicated and needs expensive facility. Polymer injection molding and hot embossing involve high temperature and high pressure. They are time-consuming batch-wise processes. In the thesis, we report a simple and effective technique for rapid fabrication of polymeric waveguides based on gas-assisted UV embossing with soft mold. In this method, the soft mold with waveguides cavity is made by casting a pre-polymer of PDMS against a silicon master, which is prepared using photolithography and deep reactive ion etching. During the process operation, a seal film, a soft mold with waveguides cavity and a silicon wafer coated with SU-8 resist layer are placed in a closed chamber to form a stack. The stack is supported by a solid holder to avoid distortion of patterns on the soft mold during the embossing stage. The nitrogen gas is then introduced into the chamber to pressurize the stack for a period time. Sequentially, the SU-8 resist is cured by UV-irradiation at room temperature. After the soft mold is removed, the polymer waveguides on the silicon wafer are obtained. In this study, a gas-assisted UV embossing facility with UV exposure capacity has been designed, constructed and tested. The effects of processing parameters on the quality of fabricated polymeric waveguides are also investigated. Under proper processing conditions, the multimode polymeric waveguides, with a line-width of 94μm, a height of 69μm and a length of 4cm has been successfully fabricated. The measured surface roughness on the surface of the waveguide component is 5.591 nm and the average propagation loss of those waveguides is 0.88dB/cm measured at a 1310 nm wavelength. These results show the great potential of using gas-assisted UV embossing for rapid fabrication of polymeric waveguides with high productivity and low cost. In addition, we propose an innovative CNP technique that combines the advantages of nanoimprint lithography (NIL) and photolithography. In the experiment, a hybrid mask mold with a light-blocking layer placed on top of the mold protrusions is used. The hybrid mask mold is fabricated by PDMS casting. The light-blocking layer on the PDMS mold is made from carbon-powders or metal material. A large area micro-pattern without residual resist layer can be formed in the resist in a single imprint lithography step. Future work will study the capability of the CNP technique and investigate new improvements to fabricate polymer waveguide and other optical devices.

參考文獻


A.Neyer, T. Knoche and L. Mulle, “Fabrication of low loss polymer waveguides using injection moulding technology”, ELECTRONICS LETTERS 18th February 1993 Vol. 29 No.4
B. Kim, E. T. K. Peterson, and I. Papautsky, “Long-Term Stability of Plasma Oxidized PDMS Surfaces”,Proceedings of the 26th Annual International Conference of the IEEE EMBS
C. G. Willson, M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Choi, M. Wedlake, T. Michaelson, S. V. Sreenivasan, and J. G. Ekerdt, “Step and Flash Imprint Lithography: A new approach to high resolution patterning”, Proc. SPIE 3676(I): 379 (1999).
J. H. Chang, and S. Y. Yang, “Gas Pressurized Hot Embossing for Transcription of Micro-Features”, Microsystem Technologies, Vol. 10, No. 1, pp. 76-80 (2003).
J. H. Chang, and S. Y. Yang, “Development of Fluid-Based Heating and Pressing Systems for Micro Hot Embossing”, Microsystem Technologies, (2004)

被引用紀錄


林承慧(2013)。環形曲面紫外光固化氣囊輔助壓印複製微結構製程研發〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2013.00099
李昀珩(2012)。環形PDMS軟模結合氣囊滾輪複製UV樹脂連續陽極氧化鋁奈米結構製程研發〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2012.02661
楊承桓(2012)。高效率高精度雙面大面積微結構複製技術之研發〔博士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2012.01827
莊岱融(2011)。PDMS環模結合氣囊滾輪複製UV樹脂微奈米結構製程的研發及應用〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2011.02408
吳景棠(2010)。氣囊輪紫外光樹脂滾壓製程技術之研發及應用〔博士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2010.02209

延伸閱讀