透過您的圖書館登入
IP:3.139.70.131
  • 學位論文

高效率高精度雙面大面積微結構複製技術之研發

Development of Efficient Techniques for Large-area Replication of High-Precision Double-Sided Microstructures

指導教授 : 楊申語

摘要


近年來,微結構廣泛應用於許多關鍵的光學與生醫元件中,因此如何有效率的製作具有卓越展現之光學與生醫元件,則為當前重要課題之一。高性能展現之元件,則需高精度微結構複製技術。於製作雙面高精度品質之微奈米結構中,板對板微熱壓印為最有可能邁入量產之技術。皮帶輪紫外光樹脂轉印,則為最具前瞻性,最能進行大量生產之技術。因此本文將針對前述兩技術進行精進。 於板對板微熱壓印技術方面,傳統均溫微熱壓印技術如同開模鍛造般,使製程物處於自由邊界之狀態下進行製程,此現象會導致製成成品產生變異。本研究中運用三種技術進行比較,分別為傳統均溫微熱壓印技術、非均勻壓力補償技術及固定邊界微熱壓印技術。固定邊界微熱壓印技術之壓板,設計成能使製程物表面呈現兩側較低溫,中央較高溫之溫度分佈。此現象使傳統微熱壓印,由自由邊界狀態轉變為固定邊界下進行製程。實驗結果顯示,固定邊界微熱壓印技術具有製造具大面積雙面高精度微結構且具高輝度之導光板,並具有邁入量產之潛能。 於皮帶輪紫外光樹脂轉印技術方面,光源展現部分:一般紫外光樹脂微結構複製製程的曝光採直下式照射,耗能且不易執行雙面微結構複製。而壓力展現部分:傳統的皮帶輪滾壓技術,基材於滾輪下方受滾輪正向力,於皮帶下方只受皮帶張力,使得製程物於壓力不均勻之狀態下進行製程,此現象則導致製成成品產生相關變異。本研究中結合側入式光源與氣浮軸承於皮帶輪滾壓技術上。側入式光源之導入,不僅減少所用能量,降低成本,並解決了不易進行雙面微結構複製之限制。而氣浮軸承可使模具與基材之接觸面積大幅增加,由感壓軟片則證實氣浮軸承確實可有效提升壓力均勻性,並提高各區域微結構轉寫精度。實驗結果顯示,皮帶輪側入光源氣浮軸承轉印技術具有大量且快速連續生產具雙面高精度微結構之光學與生醫元件之潛能。

並列摘要


In recent years, microstructure is widely used in many key optical and bio-medical components. How to effectively and efficiently fabricate optical and bio-medical components with superior performance are the essential challenges. This requires a very accurate shape replication of microstructures. The plate-to-plate hot embossing technique is the most possibility of mass production method for replication of double-sided micro/nano structures with high precision and quality. The belt-type UV-curing imprinting technique is a continuous, the fastest and efficient production method for replication of micro/nano structures. This research is devoted to the replication of v-groove microstructures on double-sided large-area plates using advanced hot embossing and belt-type UV-curing imprinting. However, the conventional uniform heating hot embossing technique as the free boundary of open die forging leads to variation. In this research, three techniques are implemented. They are the conventional uniform heating technique, the non-uniform pressure compensating technique and the fixed boundary hot embossing technique. The temperature distribution of the hot-plates of the fixed boundary hot embossing technique are designed to keep the temperature at the center part higher than the outer part on the surface of substrates. This phenomenon changes free boundary in conventional uniform heating into fixed boundary. The results demonstrate the potential of the fixed boundary hot embossing technique for the fabrication of large-area high brightness products with double-sided microstructures. The experimental results show the great potential of the fixed boundary hot embossing technique for the mass production of high brightness products. The UV resin of the conventional UV-curing imprinting technique is cured by direct irradiation from the bottom/top. It is difficult to replicate microstructure on both surfaces of plate. The non-uniform pressure distribution of substrate, which is higher beneath the rollers, can influence performance of product. The technique combines the side-emitting UV-curing, air-bearing press and a belt-type method, to replicate patterns on the polymer substrate. The side-emitting UV-curing method allows the replication of double-sided micro/nano structures. The air-bearing is employed to increase the contact area and enhance the pressure uniformity. The uniform pressure distribution on the substrate has been proven by using pressure sensitive films. The transcription rate of microstructures has been improved significantly. The side-emitting UV-curing air-bearing assisted belt-type imprinting technique has been proved an effective and efficient method for mass production of microstructures on both surface of transparent polymeric plates for optical or bio-medical applications.

參考文獻


[13] 謝正倫,滾輪微結構壓印製程開發研究,臺灣大學碩士論文,2005年6月
[24] 吳景棠,氣囊輪紫外光樹脂滾壓製程技術之研發及應用,臺灣大學博士論文,2010年7月
[53] 黃培穎,氣體輔助軟模壓印技術之研發應用於製作SU-8脊梁式光波導元件,臺灣大學碩士論文,2006年6月
[1] Kimerling T E, Liu W, Kim B H and Yao D 2006 Rapid hot embossing of polymer microfeatures Microsyst. Technol. 12 730-735
[2] Wu J T and Yang S Y 2010 A gasbag-roller-assisted UV imprinting technique for fabrication of a microlens array on a PMMA substrate J. Micromech. Microeng. 20, 085038-085044

延伸閱讀