透過您的圖書館登入
IP:3.15.197.123
  • 學位論文

應用於5G毫米波之天線設計與封裝

Design and Implementation of Antenna-in-Package for 5G Millimeter-Wave Applications

指導教授 : 林怡成

摘要


本論文針對未來第五代行動通訊的發展,分別在毫米波頻段38 GHz與60 GHz設計兩種封裝式整合天線。我們首先由文獻探討,比較晶片嵌入式天線和封裝式天線之差異。在射頻電路與毫米波天線的整合上,因考量天線的輻射效率,而採用天線與晶片整合之封裝技術。 在38GHz的部分,本論文提出設計在印刷電路板之毫米波準八木偶極天線,結合封裝的打線技術,將天線與射頻晶片作整合。所設計之天線有著寬頻、單向性輻射、高增益、高效率的特色,特別適合應用在第五代行動通訊系統上。在60GHz的部分,本論文提出一種應用於短距雷達之天線封裝模組,利用接地共平面波導作為天線饋入,結合共振背腔式設計。為了將電路整合在毫米波雷達晶片上,採用覆晶式封裝技術,以達到小型的一發射二接收之多通道多天線雷達模組。以上內容皆涵蓋文獻探討、設計架構、輻射機制、模擬結果、散射參數以及輻射場型的量測。

並列摘要


In this thesis, we demonstrate two kinds of millimeter-wave (mmW) antennas in the 38 GHz and 60 GHz bands for the development of the fifth-generation (5G) mobile communications. In the beginning, antenna-on-chip (AoC) and antenna-in-package (AiP) which integrate RF circuits with antennas in mmW band are compared and discussed, where AiP is adopted because of the antenna efficiency. In the 38 GHz part, a mmW quasi-Yagi antenna on standard printed circuit board (PCB) is proposed, combining with the wire-bonding technology to integrate the antenna with the RF chip. The proposed antenna has several features, including broadband, unidirectional pattern, high gain, and high efficiency, which is especially suitable for 5G mobile communication applications. In the 60 GHz part, an AiP module for short range radar applications is presented, using grounded coplanar waveguide (GCPW) feed, and combined with resonant cavity-backed design. In order to integrate the antenna and the mmW radar chip, the flip-chip packaging is introduced to achieve a compact multi-channel multi-antenna radar module, which consists of 1-Tx and 2-Rx. The contents of the thesis cover the literature survey, the design configuration, the radiation mechanism, simulated results, and measured S-parameters and radiation patterns.

參考文獻


[1]A. Enayati, W. Deraedt, and G. A. E. Vandenbosch, “Antenna-in-package solution for millimeter-wave applications: Slotted-patch in a multilayer PCB,” in Proc. IEEE Antennas Propag. Soc. Int. Symp. APSIS’12, Chicago, IL, USA, pp. 1-2, Jul. 2012.
[2]A. Enayati, W. Deraedt, and G. A. E. Vandenbosch, “End-fire antenna-in-package solution for millimeter-wave applications in a Teflon-based PCB technology,” in Proc. European Microwave Conf. EuMC’13, Nuremberg, DEU, pp. 48-51, Oct. 2013.
[3]N. Ghassemi, and K. Wu, “Millimeter-wave integrated pyramidal horn antenna made of multilayer printed circuit board (PCB) process,” IEEE Trans. Antennas Propag., vol. 60, no. 9, pp. 4432-4435, Sep. 2012.
[4]A. E. I. Lamminen, J. Saily, and A. R. Vimpari, “60-GHz patch antennas and arrays on LTCC with embedded-cavity substrates,” IEEE Trans. Antennas Propag., vol. 56, no. 9, pp. 2865-2874, Sep. 2008.
[5]N. Kaneda et al, “A broadband planar quasi-Yagi antenna,” IEEE Trans. Antennas Propag., vol. 50, no. 8, pp. 1158-1160, Aug. 2002.

延伸閱讀