透過您的圖書館登入
IP:18.218.168.16
  • 學位論文

原子層沉積之金屬氧化物及高分子/金屬氧化物超晶格複合材料熱電性質及氣體滲透率研究

Thermoelectricity and gas permeability of metal oxide and metal oxide/polymer superlattice composites by atomic layer deposition

指導教授 : 蔡豐羽
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究將探討由原子層沉積技術所製備之超晶格薄膜材料於熱電領域以及各種不同領域之應用,如:可撓式超高阻氣性薄膜以及奈米孔洞材料之開發。隨著穿戴型電子裝置的普及以及積體電路尺度的微縮,如何回收裝置操作時所產生的廢熱和冷卻裝置中各種微型晶片以達到再生能源之利用和裝置元件壽命的延長為現今科學家及工業界爭相研究之項目。其中薄膜熱電技術為一可同時解決這些問題之技術,但其實用性仍受限於高效能薄膜熱電材料以及高可靠性熱電薄膜製程技術之缺乏。在材料選擇方面,相較於傳統的重金屬化合物塊材熱電材料,金屬氧化物半導體薄膜熱電材料具備多項優勢,包括價格低廉、化學性質穩定、環境友善、且薄膜製備簡易等,因此為極受看好之新世代熱電材料。然而,金屬氧化物雖具有良好的電導率及Seebeck coefficient,但其熱導率亦極高,使其代表熱電效能之ZT值難以提高。本研究將利用具高可靠性之薄膜沉積技術─原子層沉積技術(ALD)製備技術純熟之氧化鋅薄膜並藉由進行新穎觀念之研究,以大幅提升之氧化鋅薄膜之熱電效能,此外,亦進行將超晶格薄膜應用於可撓式超高阻氣性薄膜以及奈米孔洞材料之開發的研究。本論文主要的研究項目有下列五點: (1) 在ALD氧化鋅中,引入不同之摻雜物以形成週期性超晶格結構,並探討摻雜物種類、濃度、分布方式以及超晶格週期對於熱電效應之影響。在我們的研究中顯示,高原子量以及離子半徑匹配於基質之摻雜物在同時使用傳統摻雜技術和本實驗室所開發的混合層摻雜技術下,可對基質之熱電效能有最佳之提升,其幅度可達12倍。 (2) 在ALD反應中,使用具18O與16O同位素之前驅物以形成具有同位素之超晶格薄膜,此研究就可在維持前項研究中所最佳化之電性條件下,更進一步的降低熱導率。於結果中顯示,50%的同位素混摻並在疊層週期約為10奈米時,可將前項研究中最佳之熱導率再下降20~25%。 (3) 開發新穎分子層沉積(MLD)之有機高分子導電薄膜,與金屬氧化物層交替沉積形成高分子/氧化物超晶格薄膜,藉由大量的有機/無機界面來大幅降低材料熱導率,但仍維持高導電度。於導電高分子的研究上,我們成功開發出兩款高分子薄膜,其中一款電導率可高達500 S cm-1。而在高分子/氧化物超晶格薄膜的熱電性質表現上,在最佳化的結構中,其熱電效能可提升7倍。 (4) 開發具抗水解能力之高分子即其所形成之高分子/氧化物超晶格薄膜阻氣性質研究。於結果中,該高分子即其所形成之超晶格薄膜皆於高濕度的環境下,具有較高的穩定性。 (5) 開發低溫熱裂解技術,以製備奈米孔洞材料。於研究中發現,在水氣的幫助下,可大幅降低alucone之熱裂解溫度以形成奈米孔洞材料。其最佳化的條件中,可有效移除高達70%的碳含量,且退火溫度可低於100℃。因此,此技術將使奈米孔洞材料可沉積於高分子基板以及應用於各種軟性電子元件中。

並列摘要


Thermoelectric thin films are an important type of materials for the management and recycling of waste heat in the ever-shrinking electronic devices, but their development has been hindered by the dearth of methods for fabricating high-quality thin films with adequate thermoelectric performance, i.e. high Seebeck coefficient, high electrical conductivity, and low thermal conductivity. This study develops high-quality superlattice thin films based on metal oxides and conducting polymers by atomic layer deposition (ALD) and molecular layer deposition (MLD), aiming to realize significant enhancement in the thermoelectric figure of merit, or ZT value, of the resultant thin films. Additionally, the gas permeation properties of the ALD/MLD superlattice thin films are also examined. Key results and findings of this work are summarized as follows. (1) Effects of composition and structure on the thermoelectric properties of metal oxide superlattice thin films: We used ZnO as our host material, into which we insert HfO2, ZrO2, or TiO2 guest layers with various thicknesses and periodicities as both electrical dopants and phonon-scattering centers. We arrived at the following conclusions: (i) of the 3 types of guest layers, HfO2 showed the best overall enhancement in ZT, by a factor of 12, over the ZnO host owing to Hf’s similar ionic radius to Zn’s and high atomic mass; (ii) the optimal electrical performance was achieved by forming the guest layers as a mixture of both ZnO and the guest in a periodicity of 1 mixed monolayer per 24 ZnO monolayer; (iii) the best phonon-scattering effect was obtained by inserting 7 guest monolayers for every two periods of the structure described in (ii). (2) Effects of incorporating O18 isotope into the metal oxide superlattice on its thermoelectric properties: Based on the optimal structure we developed in (1), we found that the ZT could be further increased by around 20% by replacing 50% of the oxygen content with O18 in a periodicity of 10 nm O16/10 nm O18. (3) Development of novel MLD conducting polymers and their superlattices with metal oxide semiconductors: Two polymers, polyaniline and poly(3,4-ethyelenedioxythiophene) (PEDOT), were successfully deposited with electrical conductivity of up to 500 S cm-1. Superlattice films composed of alternating 4 periods of ALD mix 19:1 HZO and 6 cycles of MLD PEDOT were found to offer the maximum improvement in ZT, by ~700%, over that of the undoped ZnO. (4) Development of hydrolysis-resistant MLD polymer films to fabricate ALD/MLD nanolaminated high-performance gas barrier films: Polyamide (Poly(imino-carbonyl-1,4-phenylene-carbonyl-iminoethylene)) films deposited from terephthaloyl chloride and ethylenediamine were found to provide the best long-term stability under humid condition among several polyamide films studied.

參考文獻


1. Chapter 6 — Innovating Clean Energy Technologies in Advanced Manufacturing
2. Sootsman, J. R., Chung, D. Y. & Kanatzidis, M. G. New and Old Concepts in Thermoelectric Materials. Angewandte Chemie International Edition 48, 8616–8639 (2009).
3. Seebeck, T. J. Ueber die magnetische Polarisation der Metalle und Erze durch Temperaturdifferenz. Annalen der Physik 82, 253–286 (1826).
4. Cutler, M. & Mott, N. F. Observation of Anderson Localization in an Electron Gas. Phys. Rev. 181, 1336–1340 (1969).
5. Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nat Mater 7, 105–114 (2008).

延伸閱讀