透過您的圖書館登入
IP:52.15.85.66
  • 學位論文

天線整合低雜訊放大器與K頻段調頻連續波接發器系統研究

Research on Antenna Integrated with LNA and K-band FMCW Transceiver System

指導教授 : 林坤佑
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


近年來車用導航及輔助停車系統的需求大幅增加催生了雷達系統的應用,K頻段24兆赫茲為一段不需使用執照的頻段,因此非常合適作為個人雷達系統的應用。 在本論文中,實現了兩種電路,分別為主動式整合天線的低雜訊放大器,以及直接轉換接受器及自動調整偏壓功率放大器組成的K頻段調頻連續波系統電路,第一種電路為金屬氧化物半導體製程實現,天線部分為Rogers RO4003 基板設計的介質整合波導天線,第二種為金屬氧化物半導體製程實現。 在本論文第二章中,設計一個K頻段的主動整合式天線電路,包含了使用三級放大器分別匹配到不同匹配點以達成寬頻效果的低雜訊放大器,及一個介質整合波導天線,這個電路有兩個版本,一個為低雜訊放大器輸入與天線的輸入皆匹配為50歐姆,另一個是把晶片上的輸入匹配網路拔除,直接讓天線等於我要的雜訊匹配阻抗,此章還會探討傳統上兩埠量測雜訊指數的Y參數法及可以單埠量測雜訊指數的增益法。 在本論文第三章中,實現了一個簡單的調頻連續波系統電路經由威爾金森功率分配器分給發射器及接收器,發射器改良自黃冠傑學長設計的調變式偏壓功率放大器,將功率放大器的差動輸出端改變為變壓器功率整合網路的單端輸出,接收器為低雜訊轉導放大器饋入被動混波器再經由一個轉阻放大器推動緩衝放大器,混波器的本地振盪源來自功率分配器的輸出,射頻訊號源來自於經發射器輻射出去後的回波,經由回波的資訊可得出待測物的位置速度等等資料。

並列摘要


In recent year, automobile navigation and automobile parking assist demand the application of millimeter wave radar. K-band frequency from 24GHz to 24.25GHz is an unlicensed band and is therefore suitable for personal radar system application. In this thesis, two circuits are designed and implemented which are active antenna integrated with LNA and the K-band FMCW radar transceiver front-end, respectively. the first circuit is implemented using 0.18-μm CMOS and the SIW antenna is implemented using Rogers RO4003 substrate. The second circuit is also implemented using 0.18-μm CMOS. In Chapter 2, a K-band active antenna integrated with LNA is designed. The LNA achieves wideband effect though arranging the center frequency separated around K-band. There are two CMOS circuits. One is the conventional design with on-chip matching network and the antenna is designed to provide 50 Ω. For the other circuit, we removed the on-chip matching network and designed the antenna input impedance directly equal to the noise match impedance so that the loss in front of the input transistor is removed. In this chapter, we also discussed various noise measurement method: conventional 2-port Y-factor method and the Gain method able to conduct measurement with only output port. In chapter 3, an FMCW transceiver front-end is designed and implemented. The LO power is divided by Wilkinson power divider and deliver to both power amplifier and direct conversion receiver. The power amplifier is an extended version of [1]. The original output antenna is replaced by output combining transformer. The direct conversion receiver consists of a low-noise transconductor stage, current-driven passive mixer, and transimpedance amplifier. The LO signal of receiver originates from Wilkinson power divider and the RF signal of the receiver is an echo signal from the transmitted signal by the power amplifier. The speed and distance of the target can be obtained by analyzing the signal at the mixer output.

參考文獻


[1] G. Huang, "Research on CMOS Power Amplifier with Transformer Power Combining for WLAN System Application and K-band Active Antenna Power Amplifier Using CMOS and IPD Process," master thesis, National Taiwan University, January 2017.
[2] B. Razavi, RF Microelectronics (2nd Edition), Prentice Hall Press, 2001.
[3] H. An, B. K. J. C. Nauwelaers, A. R. Van de Capelle and R. G. Bosisio, "A novel measurement technique for amplifier-type active antennas," 1994 IEEE MTT-S International Microwave Symposium Digest (Cat. No.94CH3389-4), San Diego, CA, USA, 1994, pp. 1473-1476 vol.3.
[4] H. An, B. Nauwelaers and A. van de Capelle, "Measurement technique for active microstrip antennas," in Electronics Letters, vol. 29, no. 18, pp. 1646-1647, 2 Sept. 1993.
[5] T. Nguyen, C. Kim, G. Ihm, M. Yang and S. Lee, "CMOS low-noise amplifier design optimization techniques," in IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 5, pp. 1433-1442, May 2004.

延伸閱讀