透過您的圖書館登入
IP:18.190.219.65
  • 學位論文

以糖為主體之孔洞材料

Sugar Based Porous Material

指導教授 : 邱靜雯

摘要


共價有機網狀材料(COFs)由於其高表面積的特性而使其有許多應用,例如氣體儲存、異相催化觸媒的乘載、發光半導體、光電流的傳導、超級電容器等方面。然而,絕大部分共價有機網狀材料的合成都會使用到多環芳香烃化合物,而這類有機化合物對我們人類有許多的潛在危害。為了能使共價有機網狀材料運用到更多的領域,降低其毒性是無可避免的。所以我們想要使用生物分子例如醣類或維生素來取代這些高毒性的多環芳香烃化合物而近一步合成出具有高生物相容性的孔洞材料。我們選擇醣類或維生素主要是基於化學上與經濟上的考量:其一,這些物質具有兩對以上的順式二醇可與二硼酸進行脫水反應形成具有高穩定性環硼氧烷官能基的延展結構。其二,這些是在人體內很常見到的生物分子。其三,它們比多環芳香烃化合物還要便宜很多,而且隨處可得。在本論文中,我們使用二硼酸去與不同的雙糖形成各種的生物相容性孔洞材料。隨後我們使用田口方法來優化我們的反應條件使其產物的表面積值達最大。最後,我們成功優化出以乳糖為基底的孔洞材料的反應條件,其產物的表面積為每克176平方公尺。

並列摘要


Due to the high surface area property, covalent organic frameworks (COFs) have many applications in various domains, such as gas storage, heterogeneous catalysis, luminescent semiconductor, photocurrent conduction, and super capacitor. However, the majority of COF synthesis relies on the use of polyaromatic hydrocarbons (PAHs), which pose potential threats to human health. In order to broaden the application of COFs in drug delivery, decrease in toxicity of COFs is obligatory. Thus, we decided to introduce biomolecules, such as sugars or vitamins instead of PAHs, to the network for achieving highly biocompatible porous materials. These substances are chosen for both chemical and economical reasons. First, they possess more than two pairs of cis-diol functional group that could form strong linkages with boronic acids. Second, they are very common biochemicals found in human body. Last, they are way much cheaper than PAHs. In this work, we use diboronic acid to react with different sugars to form various biocompatible porous materials, and the reaction condition for achieving high surface area is optimized using Taguchi method. Finally, we have successfully found the optimized reaction condition of lactose-based porous material, which could be produced in a large quantity with surface area of 176 m2/g.

參考文獻


1. Cote, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M., Porous, Crystalline, Covalent Organic Frameworks. Science 2005, 310 (5751), 1166-1170.
3. Furukawa, H.; Yaghi, O. M., Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications. J. Am. Chem. Soc. 2009, 131 (25), 8875-8883.
4. Ding, S.-Y.; Gao, J.; Wang, Q.; Zhang, Y.; Song, W.-G.; Su, C.-Y.; Wang, W., Construction of Covalent Organic Framework for Catalysis: Pd/COF-LZU1 in Suzuki–Miyaura Coupling Reaction. J. Am. Chem. Soc. 2011, 133 (49), 19816-19822.
5. Wan, S.; Guo, J.; Kim, J.; Ihee, H.; Jiang, D., A Belt-Shaped, Blue Luminescent, and Semiconducting Covalent Organic Framework. Angew. Chem. Int. Ed. 2009, 48 (18), 3207-3207.
6. Wan, S.; Guo, J.; Kim, J.; Ihee, H.; Jiang, D., A Photoconductive Covalent Organic Framework: Self-Condensed Arene Cubes Composed of Eclipsed 2D Polypyrene Sheets for Photocurrent Generation. Angew. Chem. Int. Ed. 2009, 48 (30), 5439-5442.

延伸閱讀


國際替代計量