透過您的圖書館登入
IP:3.144.240.61
  • 學位論文

利用苯基硼酸官能基化聚(3,4-乙烯二氧噻吩)作高靈敏又快速偵測的葡萄糖監控系統

Surface Engineering of Phenylboronic Acid-Functionalized Poly(3,4-ethylenedioxythiophene) for Fast Responsive and Sensitive Glucose Monitoring

指導教授 : 羅世強

摘要


1957年,發明了第一個葡萄糖感測器主要是利用葡萄糖氧化酶(glucose oxidase)來修飾電極並且利用過氧化氫的氧化還原來偵測葡萄糖,但是傳統利用酶的葡萄糖感測器易因為環境因素而使得偵測失真。隨著科技的進步,新型的葡萄糖感測器則是使用化學分子來取代酶當作葡萄糖的受體。本實驗最主要利用含有硼酸的導電高分子薄膜來製作出非酶的葡萄糖感測器,希望未來可應用於長時間血糖監控系統。根據以前的文獻表示硼酸(boronic acid)可以乙二醇形成可逆的共價鍵結,而在鹼性的環境中,硼酸對乙二醇的吸引力會變更大。由上述所知硼酸的官能基非常適合用來當作血糖感測器的受體。我們將合成的方式將3,4-乙烯二氧基噻吩 (3,4-ethylenedioxythiophene, EDOT) 和硼酸官能基接上製備成硼酸官能化3,4-乙烯二氧基噻吩(EDOT-PBA)。接著使用電化學聚合的方式將製備出含有硼酸酸官能基的導電高分子薄膜,而且我們利用了不同的製成方式使得導電高分子膜的表面形貌都皆為不同。從二氯甲烷(dichloromethane)所製備出的導電高分子薄膜其表面都是由微小的管狀奈米結構所組成;乙腈和離子液體中所製備出來的表面則是較為平坦。之後我們將在導電高分子薄膜上覆蓋一層牛血清蛋白(BSA)使得表面不但對葡萄糖有特定性吸附又同時有抗沾黏特性避免在有其他的蛋白質或是細菌吸附表面而影響到偵測。我們藉由石英晶體微量天平-耗散偵測系統 (quartz crystal microbalance with dissipation, QCM-D)來觀察葡萄糖和牛血清蛋白的吸附。我們發現導電高分子薄膜的表面形貌會影響到牛血清蛋白和葡萄糖的吸附機制,管狀奈米結構的導電高分子薄膜具有最好的葡萄糖吸附效果還有良好的可逆性,重要的是葡萄糖的吸附不會受到微量的果糖或半乳糖影響。接下來我們使用兩種偵測儀器來觀察導電高分子薄膜對葡萄糖的偵測效果,第一種是石英晶體微量天平-耗散偵測系統其偵測極限在0.5 mM和偵測範圍在0.5 mM ~10 mM 之間;第二種是電化學阻抗頻譜分析(electrochemical impedance spectroscopy)其偵測極限在50 µM和偵測範圍在0.05 mM ~10 mM 之間,並且再利用石英晶體微量天平來做長時間的葡萄糖監控。本實驗證實了含有硼酸官能基的導電高分子薄膜適合應用於血糖感測器並有潛力發展成長時間的血糖偵測系統,其可多次測量而且偵測也不受血液中其他糖類影響。

並列摘要


In this study, we have successful demonstrated a nanostructured phenylboronic acid-grafted poly(3,4-ethylenedioxythiophene), poly(EDOT-PBA), platform for fast and sensitive glucose monitoring. The poly(EDOT-PBA) films of well-organized tubular nanostructures can be fabricated by direct electropolymerization without templates. Compared to the smooth poly(EDOT-PBA), the nanotubular poly(EDOT-PBA) shows enhanced glucose sensitivity and different adsorption process of bovine serum albumin (BSA). Besides, the BSA blocking and low concentration fructose and galactose do not affect the sensitivity of this platform. Both quartz crystal microbalance (QCM) and electrochemical impedance spectroscopy (EIS) methods are used and compared for glucose monitoring by applying nanotubular poly(EDOT-PBA) as conductive substrates. Compared to QCM analysis, EIS has higher sensitivity to glucose and the detection limit is about 50 µM. Besides, the poly(EDOT-PBA) film is useful for long-term detecting glucose level by QCM because the binding with glucose on poly(EDOT-PBA) is highly reversibly . Based on these observations, the nanotubular poly(EDOT-PBA) has great potential for enzyme-free electrodes targeting continues glucose monitoring applications.

參考文獻


1. McMurry, J.; Begley, T. P., The organic chemistry of biological pathways. Roberts and Company Publishers: 2005.
2. Martins, P. J. F.; Haas, M.; Obici, S., Central Nervous System Delivery of the Antipsychotic Olanzapine Induces Hepatic Insulin Resistance. Diabetes 2010, 59 (10), 2418-2425.
3. Wild, S.; Roglic, G.; Green, A.; Sicree, R.; King, H., Global prevalence of diabetes - Estimates for the year 2000 and projections for 2030. Diabetes Care 2004, 27 (5), 1047-1053.
4. Lowell, B. B.; Shulmanz, G. I., Mitochondrial dysfunction and type 2 diabetes. Science 2005, 307 (5708), 384-387.
5. Diamond, D., Principles of chemical and biological sensors. Wiley: 1998.

延伸閱讀