透過您的圖書館登入
IP:3.135.187.106
  • 學位論文

苯並[1,2-b:4,5-b']雙[b]苯並噻吩-雙內醯胺-3-亞基丙二腈應用於空氣中穩定操作之N型有機場效電晶體

Benzo[1,2-b:4,5-b']bis[b]benzothiophene-bislactam-3-ylidene Malononitrile for Air Stable N-Channel Organic Field Effect Transistors

指導教授 : 郭明裕
本文將於2026/09/05開放下載。若您希望在開放下載時收到通知,可將文章加入收藏

摘要


在2018年,W. Yue等人發表了以BBBT為主結構合成了一系列BBBT-isoindigo衍生物。而我們為了研究出在空氣中能穩定操作的N型有機半導體材料,因此在本篇論文中我們以其中的化合物BBBT bislactam為主結構並改變烷基側鏈的長度,並希望透過氰基來降低材料LUMO能階以及縮小能階,使其在空氣中能成為穩定操作的N型有機半導體材料。 我們合成出BBBT-CN-C10C14、BBBT-CN-C6C10及BBBT-CN-SiC8。而我們為了確認化合物能否成為空氣中穩定操作之N型有機半導體材料,因此對上述三種化合物的電化學性質、熱穩定性以及光學性質進行探討。在這邊我們透過UV-Vis、CV及公式轉換分別得到了BBBT-CN-C10C14、BBBT-CN-C6C10及BBBT-CN-SiC8的LUMO、HOMO能階為-4.03、-4.03、-4.00 eV及-5.68、-5.65、-5.63 eV。而BBBT-CN-C10C14在TGA上也顯示出良好的熱穩定性。我們也期望BBBT-CN材料能成為在空氣中可穩定操作之N型有機半導體元件材料。

並列摘要


In 2018, W. Yue et al. published a series of BBBT-isoindigo derivatives synthesized with BBBT as the main structure. In order to research the N-type organic semiconductor materials that can operate stably in the air. In this paper, we think of the compound BBBT bislactam as the main structure and change the length of the alkyl side chain, and through the cyano bond to reduce the LUMO energy level and energy gap of the material, let it become an N-type organic semiconductor material and operate stably in the air. We synthesized BBBT-CN-C10C14, BBBT-CN-C6C10 and BBBT-CN-SiC8 compounds. In order to confirm that the compound can be an N-type organic semiconductor material that stably operates in the air. We discussed the electrochemical properties, thermal stability and optical properties of these three compounds. By UV-Vis, CV and formula conversion we obtained the LUMO and HOMO energy levels of BBBT-CN-C10C14、BBBT-CN-C6C10 and BBBT-CN-SiC8, which are -4.03, -4.03, -4.00 eV, and -5.68, -5.65, -5.63 eV, respectively. And BBBT-CN-C10C14 also show excellent stability on TGA. We except BBBT-CN to be an excellent N-type semiconductor material.

並列關鍵字

Air-stable N-type material OFET

參考文獻


伍、參考文獻
[1.] Pope, M.; Kallmann, H. P.; Magnante, P., Electroluminescence in Organic Crystals. The Journal of Chemical Physics 1963, 38 (8), 2042-2043.
[2.] Shirakawa, H.; Louis, E. J.; MacDiarmid, A. G.; Chiang, C. K.; Heeger, A. J., Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH). Journal of the Chemical Society, Chemical Communications 1977, (16), 578-580.
[3.] Tsumura, A.; Koezuka, H.; Ando, T., Macromolecular electronic device: Field‐effect transistor with a polythiophene thin film. Applied Physics Letters 1986, 49 (18), 1210-1212.
[4.] Jurchescu, O. D.; Popinciuc, M.; van Wees, B. J.; Palstra, T. T. M., Interface-Controlled, High-Mobility Organic Transistors. Advanced Materials 2007, 19 (5), 688-692.

延伸閱讀