透過您的圖書館登入
IP:18.218.61.16
  • 學位論文

複方中草藥調節免疫及樟芝子實體抑制腫瘤之研究

Studies on the Immunomodulatory Properties of Chinese Herbal Formulas and the Anti-Tumor Effects of Antrodia cinnamomea Fruiting Bodies

指導教授 : 許輔
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


第一部份以山防風(Echinops grijsii)、山葡萄(Ampelopsis brevipedunculata Maxim)、白鶴靈芝 (Rhinacanthus nasutus L. Kurz)、荔枝草 (Salvia plebeia R. Brown) 及雞血藤 (Millettia reticulata) 之乾燥粉末,做成複方中草藥配方 A 與 B 並以BALB/c 小鼠為對象,探討其個別之免疫調節活性。非特異性免疫活性結果顯示餵食複方 A 高劑量 (5.4 mg/mouse) 與複方 B 高劑量 (4 mg/mouse) 可顯著提高小鼠脾細胞增生率;餵食複方 A 高、中 (1.8 mg/mouse)、低 (0.6 mg/mouse) 三劑量與複方 B 高及中 (1.3 mg/mouse) 劑量均能顯著提升脾細胞 IFN-γ 之分泌量,餵食複方 A 中劑量與複方 B 高劑量亦能提高脾細胞 IL-2 之分泌量;而餵食複方A 與複方 B 三劑量,相較於 PBS 組可提高小鼠脾細胞中 NK cells 之活性;餵食複方 A 中、低劑量與複方 B 高、中劑量之血液中單核球細胞的吞噬能力皆顯著高於餵食 PBS 組;餵食複方 A 高劑量會顯著增加 TH 細胞且中劑量會顯著增加B cell 之比例,而複方 B 三劑量則無顯著差異。餵食複方 A 高、中劑量與複方B 高、中、低 (0.5 mg/mouse) 三劑量均能顯著提升小鼠血清中 IFN-γ 及 IL-2 之分泌量,此外,餵食複方 B 高、低劑量之小鼠,相較於餵食對照組 (PBS) 能顯著提高血清中總 IgG 濃度。 OVA 特異性免疫活性結果顯示餵食複方 A 與複方 B 三劑量均能顯著提高小鼠 OVA 特異性之脾細胞增生率;而餵食複方 A 與複方 B 高及中劑量均能顯著提升 OVA 特異性 IFN-γ 之分泌量,餵食複方 B 高、中、三劑量則可顯著提升 OVA 特異性 IL-2 之分泌量。此外,餵食複方 A 與複方 B 高、中劑量相較於餵食對照組 (PBS) 能顯著提高血清中 OVA 特異性之 IgG 濃度,有助於體液性免疫反應而防禦對抗侵害性之特異抗原。上述結果說明餵食複方中草藥配方 A與配方 B 於高及中劑量均有助於提高小鼠的非特異性與 OVA 特異性免疫反應,具醫藥或健康食品之應用潛力。 第二部份主要探討樟芝 (Antrodia cinnamomea) 子實體的抗腫瘤活性及其機制。乾燥之樟芝子實體粉末以去離子水加熱煮沸配製懸浮水溶液,以低 (0.22 mg/mouse)、中 (0.66 mg/mouse) 及高劑量 (2.00 mg/mouse) 為試驗組,並以去離子水 (deionized water, DI) 作為對照組,以及本實驗室純化所得之金針菇免疫調節蛋白 FIP-fve (0.20 mg/mouse) 作為正控制組。罹癌小鼠存活實驗顯示,注射 ATCC BNL 1MEA.7R.1 肝癌細胞 (3x104 cells/mouse) 之 BALB/c 小鼠在餵食高、中劑量樟芝樣本後,相較餵食對照組 (DI),可顯著延長罹癌小鼠存活時間分別達 47.4 % 及 57.1 %。 在非特異性抗腫瘤活性方面,結果顯示餵食樟芝子實體水萃物高中低三劑量組之小鼠,均可顯著活化腹腔巨噬細胞提升細胞激素 TNF-α 分泌量及 NO 之產生量;且小鼠腹腔巨噬細胞毒殺小鼠肝癌細胞能力,與對照組相比皆具有顯著性差異。在腫瘤特異性抗腫瘤活性方面,結果顯示餵食樟芝子實體高中低三劑量均可顯著促進腫瘤特異性之小鼠脾細胞增生作用;並顯著提升小鼠脾細胞之腫瘤特異 IFN-γ 分泌量及顯著提高腫瘤特異性 IgG 分泌量;且小鼠脾臟細胞毒殺小鼠肝癌細胞能力,與對照組相比皆具有顯著性差異;而餵食高及中劑量組可顯著提升小鼠脾細胞之腫瘤特異性 TNF-α 及 IL-2 分泌量。以上結果顯示餵食樟芝子實體於中高劑量,均具有活化非特異性及腫瘤特異性之免疫調節活性,因而具有抑制小鼠肝腫瘤之作用。

並列摘要


In part І, the objective was to evaluate the immunomodulatory effects of Chinese herbal formula A (CHFA) and Chinese herbal formula B (CHFB). The results of the evaluation of non-specific immunomodulatory activities showed that administrating of high doses of CHFA (5.4 mg/mouse) and CHFB (4.0 mg/mouse) significantly (p < 0.05) enhanced cell proliferation of mouse splenocytes. Administration of CHFA at high, medium (1.8 mg/mouse), and low (0.6 mg/mouse) doses and CHFB at high, and medium (1.3 mg/mouse) doses significantly (p < 0.05) increased IFN-γ secretion by mouse splenocytes. Administration of CHFA (medium dose) and CHFB (high dose) significantly (p < 0.05) increased IL-2 secretion by mouse splenocytes. All three doses of CHFA and CHFB significantly (p < 0.05) enhanced the NK cells activity of mouse splenocytes. Administration of CHFA and CHFB at high and medium doses significantly (p < 0.05) enhanced the phagocytosis activities of monocytes. High and medium doses of CHFA significantly (p < 0.05) increased the ratio of TH cells and B cells in the mouse splenocytes. Administration of CHFA (high and medium doses) and CHFB high, medium, and low (0.5 mg/mouse) doses significantly (p < 0.05) increased the secretion of IFN-γ and IL-2 in sera. Taking high and low doses of CHFB significantly (p < 0.05) increased total IgG secretion in sera. The results of the evaluation on OVA-specific immunomodulatory activities showed that administration of CHFA and CHFB at high, medium, and low doses significantly (p < 0.05) enhanced the OVA-specific cell proliferation of mouse splenocytes. The formulas at high and medium doses significantly (p < 0.05) increased OVA-specific IFN-γ secretion by mouse splenocytes. The consumption of CHFB at all three doses significantly (p < 0.05) increased OVA-specific IL-2 secretion by mouse splenocytes. Moreover, high and medium doses of the two formulas significantly (p < 0.05) enhanced OVA-specific IgG secretion in sera. These results demonstrated that administration of CHFA and CHFB had immunomodulatory functions. Both these formulas might have potentials in related medicinal and health food applications. In part Ⅱ, the objective was to investigate the anti-tumor effects and its related mechanisms of Antrodia cinnamomea fruiting bodies. Oral administration of high (2.00 mg/mouse) and medium (0.66 mg/mouse) doses of A. cinnamomea fruiting body samples significantly (p < 0.05) increased the life span of ATCC BNL 1MEA.7R.1 hepatoma-bearing mice (3×104 cells/mouse) by 47.4 % and 57.1 %, respectively. This result suggested that A. cinnamomea displayed activities to suppress hepatoma growth in vivo. To understand the mechanism corresponding to this anti-tumor activity, effects of A. cinnamomea on activating the non-specific and tumor-specific immunity of the host were further investigated. The results of non-specific immunomodulatory activities showed that administration of A. cinnamomea fruiting body samples at high, medium, and low (0.22 mg/mouse) doses significantly (p < 0.05) stimulated mouse peritoneal macrophages to secreted TNF-α and produced NO. Additionally, the tumoricidal activity of peritoneal cells was also significantly enhanced (p < 0.05). The results of tumor-specific immunomodulatory activities showed that taking A. cinnamomea samples at three different doses significantly (p < 0.05) enhanced the tumor-specific cell proliferation of hepatoma-bearing mice splenocytes. A. cinnamomea samples at all three doses significantly (p < 0.05) increased tumor-specific IFN-γ secretion by hepatoma-bearing mice splenocytes and significantly (p < 0.05) enhanced tumor-specific IgG secretion in serum. High and medium doses of A. cinnamomea samples significantly (p < 0.05) increased tumor-specific TNF-α and IL-2 secretion by hepatoma-bearing mice splenocytes. The tumoricidal activity of splenocytes cells obtained from hepatoma-bearing mice fed the A. cinnamomea samples was also significantly enhanced (p < 0.05). These results showed that A. cinnamomea fruiting body samples carried out anti-tumor activity by activating both the non-specific and tumor-specific immunity of their host.

參考文獻


林苡芬。2004。不同發酵碳源之牛樟芝菌絲體發酵過濾液對人類肝癌細胞株之影響。國立台灣大學食品科技研究所碩士論文。
吳安茹。2006。複方中草藥之安全性及免疫調節功能。國立中興大學食品暨應用生物科技學系碩士論文。
郭肇凱。2005。七種中草藥免疫調節功能之研究。國立台灣大學園藝學研究所碩士論文。
Chen, C. J., Su, C. H., and Lan M. H. 2001a. Study on solid cultivation and bioactivity of Antrodia camphorata. Fung. Sci. 16: 65-72.
Chen, C.J., Lin, W. H., Chen, C. N., Sheu, S. J., Huang, S. J., and Chen, Y. L. 2001b. Development of Antrodia camphorata mycelium with submerge culture. Fung. Sci. 16:7-22.

被引用紀錄


王柏森(2008)。樟芝(Antrodia cinnamomea)固態發酵培養產物之成分分析與抗氧化活性之研究〔碩士論文,國立屏東科技大學〕。華藝線上圖書館。https://doi.org/10.6346/NPUST.2008.00117
張智翔(2010)。微米化保健食品配方免疫調節與抗腫瘤活性之研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2010.10758
蔡明哲(2008)。組合性保健食品配方免疫調節活性之研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2008.10330

延伸閱讀