透過您的圖書館登入
IP:18.217.144.32
  • 學位論文

適用於電力監控之自主供電無線感測系統

A Batteryless Wireless Sensor System for Power-Line Monitoring

指導教授 : 呂良鴻

摘要


回收浪費掉的熱能以及有效率的使用能源是現今很重要的研究主題。目前能源擷取技術能夠將散佈在環境中的能源浪費回收起來,並且轉換成電能提供給電子電路做使用。因為熱電材料透過家中過載電線以及環境的溫差擷取熱能,產生出來的電壓是會變動的,因此需要設計一個可以提供穩定的輸出電壓給電子電路的升壓器。 在無線感測網路裡包含了各種無線感測節點在許多不同的應用之中,而能源擷取器在自主供電的無線感測器裡是一個關鍵的元件。隨著物聯網的成長,增加了無線感測資訊傳輸的需求。在互補式金屬氧化物半導體擁有低成本、低功耗以及高整合度的特性,大部分的無線感測器都喜愛使用互補式金屬氧化物半導體製程。由於以上因素,本論文提出了一個適用於電力監控之自主供電無線感測系統。

並列摘要


The concepts of the waste heat energy recovery and efficient power consumption have been one of the most significant research topics. The Energy harvesting technology enables to recover the waste energy dispersed into the environment and convert it into electrical energy to supply low power circuits. The thermoelectric generator induced voltage from the temperature difference between the overload power-line and the ambient could be variation. Therefore, a boost converter is mandatory to provide a regulated output voltage as the power supply for the electronic circuits. Wireless sensor networks (WSNs) consisting of several wireless sensor nodes are used in various applications. Energy harvesters are key components of self-power wireless sensors. With growing interest in the Internet of things (IoT), there has been increasing demand for wireless transmission of information captured by various sensors. The complementary metal-oxide-semiconductor (CMOS) process has a low cost, low power and high integration characteristics so that it becomes the new preference of the wireless sensor node which has simple signal reception and transmission systems. In this work, a batteryless wireless sensor system for power-line monitoring is presented.

參考文獻


[1] D. Davino, A. Giustiniani, and C. Visone, “Capacitive load effects on a magnetostrictive fully coupled energy harvesting device,” IEEE Trans. Magn., vol. 45, no. 10, pp. 4108–4111, Oct. 2009.
[2] Y. J. Sang, X. L. Huang, H. X. Liu, and P. Jin, “A vibration-based hybrid energy harvester for wireless sensor systems,” IEEE Trans. Magn., vol. 48, no. 11, pp. 4495–4498, Nov. 2012.
[3] G. Cha and Y. S. Ju, “Pyroelectric energy harvesting using liquid-based switchable thermal interfaces,” Sens. Actuators A, Phys., vol. 189, pp. 100–107, Jan. 2013.
[4] V. Sholin, J. D. Olson, and S. A. Carter, “Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting,” J. Appl. Phys., vol. 101, no. 12, p. 123114, Jun. 2007.
[5] S. Boisseau, G. Despesse, S. Monfray, O. Puscasu, and T. Skotnicki, “Semi-flexible bimetal-based thermal energy harvesters,” Smart Mater. Struct., vol. 22, no. 2, p. 025021, Jan. 2013.

延伸閱讀