透過您的圖書館登入
IP:3.12.36.30
  • 學位論文

表面電漿共振及表面增強拉曼散射雙重檢測感測器之開發與應用

Development and Application of Dual SPR-SERS Plasmonic Sensors

指導教授 : 楊申語
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


表面電漿共振(SPR)是一種即時且非標定的檢測技術,因為其對金屬表面折射率之變化十分敏感,因此於許多領域如疾病診斷、環境監控與食品安全皆有極大的發展潛力。然而,此種檢測技術並不適合用於分子鑑定上。而表面增強拉曼散射(SERS)則是一種對分子鑑定有高度專一性的檢測技術。當結合SPR與SERS時,則可以同時作定性與定量檢測。藉由單一製程即可應用於兩種檢測技術,不但可降低成本,也能增加檢測之方便性並創造更大的應用潛力。 本研究利用奈米壓印(Nanoimprinting)技術與電子束微影技術製作之矽母模,將奈米結構轉印於高分子COP膜上,可達到快速且低成本的需求。接著分別利用改變結構設計與斜向蒸鍍之方法,製作了兩種可同時作SPR與SERS檢測之生物晶片,其分別為奈米金屬狹縫孔洞複合結構與斜向蒸鍍奈米金屬狹縫結構。 奈米金屬狹縫孔洞複合結構藉由於狹縫結構加入孔洞結構之方式,增加表面拉曼熱點的數量,以提升SERS檢測之效果,並同時保留SPR檢測之特性。本研究除了確認孔洞結構會造成拉曼強度之提升,也意外發現孔洞結構於某些排列與週期下,可以提高表面靈敏度,使SPR檢測之效果同時達到提升。 斜向蒸鍍奈米金屬狹縫結構藉由斜向蒸鍍技術(Oblique Angle Deposition),於狹縫結構上鍍上粗糙之金膜以提供大量的拉曼熱點,使SERS檢測效果大幅提升,以與狹縫水平之鍍膜角度與240nm之鍍膜厚度,可以得到最佳之SERS檢測效果,並可同時利用穿透光譜之共振波谷作SPR檢測。因斜向蒸鍍奈米金屬狹縫結構具有極佳之SERS檢測效果,本研究進一步應用此結構於農藥陶斯松與有機揮發氣體丙酮、乙醇之定性檢測上,證實此結構確實具有量測並分辨不同生物分子之能力。

並列摘要


Surface Plasmon Resonance (SPR) sensing is a real-time and label-free detection technique which is sensitive to the changes of refraction index on the metal surface. However, SPR is not suitable for molecular identification. On the other hand, Surface-Enhanced Raman Scattering (SERS) is a highly specific technique to identify molecules. By combining both SPR and SERS, quantification and qualification analysis can be accomplished on single biosensor. In this study, Nanoimprinting technique was used to transfer nanostructures on COP plastic substrate. By changing the design of structures and using the oblique angle deposition technique, we made two kinds of dual SPR-SERS plasmonic sensors. Gold nanoslit structures are used for SPR sensing in our previous study. By adding nanohole with specific arrangement and quantities to the nanoslit structures, SERS effect can be enhanced due to the increase of Raman hot spots, and SPR effect can be remained and be enhanced. Nanoslit structures with rough metal surfaces were made by oblique angle deposition. Rough metal surfaces can produce many raman hot spots and make SERS effect strongly enhanced. The highest enhancement is achieved by the situation that deposition direction is horizontal to the slit direction and optimized deposition thicknessis240nm. Meanwhile, SPR detection can also be done by observing the shift of resonant dip. Further, Raman detection of chlorpyrifos, acetone gas and ethanol gas is demonstrated.

參考文獻


[1] Becker, H. and U. Heim, "Hot embossing as a method for the fabrication of polymer high aspect ratio structures", Sensors and Actuators A: Physical, 83(1–3): p. 130-135 (2000)
[2] 張哲豪, "流體微熱壓製程開發研究", 臺灣大學機械工程研究所博士論文 (2004)
[3] Lee, K.-L., et al., "Enhancing Surface Plasmon Detection Using Template-Stripped Gold Nanoslit Arrays on Plastic Films", ACS Nano, 6(4): p. 2931-2939 (2012)
[6] Haisma, J., et al., "Mold‐assisted nanolithography: A process for reliable pattern replication", Journal of Vacuum Science & Technology B, 14(6): p. 4124-4128 (1996)
[7] Narasimhan, J. and I. Papautsky, "Polymer embossing tools for rapid prototyping of plastic microfluidic devices", Journal of Micromechanics and Microengineering, 14(1): p. 96 (2004)

延伸閱讀