透過您的圖書館登入
IP:52.14.113.166
  • 學位論文

雙光子聚合之具有不同表面粗糙度的基底設計與製造

Fabrication of Substrates with Different Surface Roughness Regions by Two-Photon Polymerization Technology

指導教授 : 鍾添東

摘要


本論文通過雙光子聚合技術研究了具不同表面粗糙度區域的細胞基底的設計和製造。具有不同表面粗糙度區域的細胞基底可用於研究人骨肉瘤細胞的遷移行為。通過改變TPP製作過程中的體素距離、雷射功率或掃描線間隙,可達成控制細胞基板表面粗糙度的目的。雙光子聚合製造系統選用低成本的130kHz高頻率Nd:YAG雷射,3D壓電平台以及放大倍率為50倍、數值孔徑為0.8的物鏡。使用1.2%光起始劑之新配方ORMOCOMP®被採用來改善體素大小。最初CAD模型被切成等高的閉合輪廓線,每條輪廓線被分成點當作為激光的掃描軌跡,最終激光焦點沿著掃描軌跡逐點聚合樹脂來製作微結構。由TPP製造的細胞基底結構可以用作主樣品,用於通過納米壓印(NIL)產生多個複製品樣本並用於細胞遷移測試。此外,為了加速生產,測試了可將雷射光束分散成分成25(5x5)個矩形光束之光學繞射元件,藉由此元件可同時加工出5X5陣列之結構。最後成功使用光學繞射元件加工出質量良好的菲涅耳透鏡陣列和疏水性結構陣列。

並列摘要


This thesis studies the design and fabrication of cell substrates with different surface roughness regions by two-photon polymerization (TPP). The substrates with different surface roughness regions can be used in studying the migration behavior of human osteosarcoma cells. The surface roughness of substrate can be controlled by changing the voxel distance, laser power, scanned line gap of the 3D printing process in TPP. The TPP fabrication system uses a low-cost 130kHz high repetition rate Nd:YAG laser, 3D piezo stage, and 50x microscope objective with 0.8 numerical aperture. The CAD model is sliced into closed contours, each contour is divided into points as the laser scanning trajectories, and the laser focal spot follows the trajectories for polymerizing the resin. The micro substrate structures manufactured by TPP can be used as a master sample for reproducing multiple replica samples by nanoimprint lithography (NIL) and used in cell migration test. Besides, to speed up the production, a diffractive optical element (DOE) is implemented. The DOE can split the laser beam into 25 (5x5) rectangular beams to fabricate 5x5 array structures at one time. Good quality of Fresnel zone plate arrays and hydrophobic structure arrays are fabricated successfully with DOE.

參考文獻


[1] S. Kawata, H. B. Sun, T. Tanaka, K. Takada, "Finer features for functional microdevices," Nature 412, pp.697-698, 2001.
[2] J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Frohlich, M. Popall, "Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics," Opt Lett 28, pp.301-303, 2003.
[3] F. Formanek, N. Takeyasu, T. Tanaka, K. Chiyoda, A. Ishikawa, S. Kawata, "Threedimensional fabrication of metallic nanostructures over large areas by two-photon polymerization," Opt Express, vol. 14, pp.800-809, 2006.
[4] A. Ovsianikov, B. Chichkov, P. Mente, N. A. Monteiro-Riviere, A. Doraiswamy, R. J. Narayan, "Two photon polymerization of polymer-ceramic hybrid materials for transdermal drug delivery," Int J Appl Ceram Tec, vol. 4, pp.22-29, 2007.
[5] T. StichelEmail, B. Hecht, R. Houbertz, G. Sextl, "Compensation of spherical aberration influences for two-photon polymerization patterning of large 3D scaffolds," Applied Physics A, vol. 121, no. 1, pp.187-191, 2015.

延伸閱讀