本研究之目的在於開發單層與雙層結構厚度之高深寬比懸浮微結構製程,並應用在微機電推動光纖式光開關。在單層結構厚度之高深寬比懸浮微結構製程開發上,針對理想之高深寬比懸浮製程之條件,綜合各種懸浮製程之優點,在小開口面積之前題下,提出一種單一光罩、單次乾蝕刻加工、使用光阻做為遮罩、不受結構深度限制之SRM製程。目前所能提供之製程能力可以製作120μm厚、最大溝槽深寬比達28:1之懸浮微結構。在大開口面積之前題下,利用改良式SRM製程,在加強微溝槽效應下,可以製作結構厚度為100μm,最大溝槽深寬比達20:1之懸浮微結構。除SOI製程外,為目前擁有最大結構厚度與溝槽最大深寬比製程能力之設計。在雙層結構厚度之高深寬比懸浮微結構製程開發上,本研究亦針對SOI與單晶矽兩種基材,並針對製程中可能發生之問題,提供完整的平台架構與解決方案。 在製作1X2與1x4微機電推動光纖式光開關方面,首先針對光通訊市場與光開關種類,進行初步了解;在設計方面,首先根據產品之性能需求訂定產品規格,接著依功能之要求決定最佳之驅動模式;然後利用商用輔助軟體進行細部設計以決定結構之主要元件時,同時依此需求配合已開發之製程平台,製作出1X2與1X4微機電移動光纖式光開關。在1X2光開關方面,最佳之插入損失為0.9dB;在1X4光開關方面,最佳之插入損失為5.6dB。
This work is devoted to the development the processes for single or double layers device of high-aspect-ratio suspended structures and the application for MEMS optical fiber-to-fiber optical switches. In the development of single layer high-aspect-ratio suspended structures, we proposed the single-run single-mask process for the small opening of high-aspect-ratio suspended structures. The maximum device thickness is 120μm and maximum trench aspect ratio is 28:1. Except for SOI process, SRM process can offer the best manufacturing capacity. For larger opening of high-aspect-ratio suspended structures, by enhancing the microtrenching effect, we modified the SRM process and achieved the maximum device thickness of 100μm and maximum trench aspect ratio of 20:1. Besides, we also study the SOI and non-SOI processes for two layer thickness of high-aspect-ratio suspended structures, offering the total solution for manufacturing. In the design and fabrication of MEMS optical fiber switches, we proposed the optimized dimensions for various type of optical switches by the simulation of Coventorware. By using the proposed two layer thicknesses of SOI manufacturing technology, we can fabricate 1X2 and 1X4 optical fiber-to-fiber switches. The optimized insertion loss is 0.9dB for 1X2 type and 5.6dB for 1X4 type.