透過您的圖書館登入
IP:3.145.74.54
  • 學位論文

具有表面階層式抗反射層結構之量產型單晶矽太陽能電池

Industrial-scale Mono-crystalline Si Solar Cells with Surface Hierarchical Antireflection Structure

指導教授 : 管傑雄
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文為提出一種簡單且適用於量產型單晶矽太陽能電池製程方法,以製造具有表面階層式抗反射層結構之量產型單晶矽太陽能電池。故本實驗在一般商業化太陽能電池製程之中再加入金屬輔助化學蝕刻,蝕刻出具有不同半徑大小、密度以及深度之奈米孔洞,組合成一奈米/微米尺度之階層式紋理結構,增強光捕捉,使全波段反射率降低。於此探討於相同微米級金字塔紋理中,不同半徑大小、密度以及深度之奈米孔洞的表面形貌對光波長400nm到1100nm頻段之反射率、外部量子效率以及轉換效率。 本論文中奈米孔洞的製作,乃是在商業化太陽電池製程之中加入硝酸銀/氫氟酸混合溶液之一步驟金屬輔助化學蝕刻方法,在微米級表面金字塔結構上再蝕刻奈米級孔洞,探討其奈米孔洞與反射率及外部量子效率之關係及轉換效率。 於本實驗中可知使用低成本的一步驟金屬輔助蝕刻方法,製作表面階層式抗反射層結構之單晶矽太陽能電池,有效的降低反射率並提升外部量子效率,以提升太陽能電池之轉換效率。

並列摘要


This thesis is using a simple and suitable for mass production type single crystalline silicon solar cell manufacturing process method to produce the surface hierarchical antireflection. Therefore ,this thesis propose that using metal-assisted chemical etching to etch different size ,density and depth nanopores on micro-scale pyramid texture to form hierarchical antireflection structure. This nano / micro-scale structure enable incident light absorption effectively and low reflectance in 400 nm to 1000 nm. So base on this concept ,we discuss the different nanopores size,depth and density how to impact the reflectance ,conversion efficiency and external quantum efficiency in 400 nm to 1000 nm , and its morphology. We use AgNO3 and HF,called one step metal-assisted chemical etching, to etch the smaller nanopores on micro-scale pyramid texture. We discuss the relationship between nanopores size and conversion efficiency and external quantum efficiency. Seen in this experiment using a low-cost metal assisted one step etching method, the production of single-crystal silicon solar cell surface hierarchical structure of the anti-reflection layer, effectively reduce the reflectivity and improve the external quantum efficiency, to improve the conversion efficiency of solar cells.

參考文獻


[4] Seung-Yoon Lee, Hongsik Choi, Hongmei Li, Kwangsun Ji, Seunghoon Nam,Junghoon Choi, Seh-Won Ahn, Heon-Min Lee, Byungwoo Park,“Analysis of a-Si:H/TCO contact resistance for the Si heterojunction back-contact solar cell” Solar Energy Materials and Solar Cells, Vo l. 120, Part A, Pages 412–416, January 2014
[7]PV education, absorption coefficient
[8]Green MA, Keevers MJ., “Optical properties of intrinsic silicon at 300 K.”Progress in Photovoltaics: Research and Applications. 1995 ;3:189 - 192.
[9] ” SEMICONDUCTORMATERIAL AND DEVICE CHARACTERIZATION ”pp.629,by DIETER K.SCHRODER,Wiley
[10]Nova 600i, FEI company

延伸閱讀