透過您的圖書館登入
IP:3.144.77.71
  • 學位論文

表面階層式抗反射層結構應用於量產型單晶矽太陽能電池

Utilizing Surface Hierarchical Antireflection Structure on Industrial-scale Crystalline Si Solar Cells

指導教授 : 管傑雄
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


為解決能源危機,許多再生能源興起,如水力、風力、太陽能等,而太陽能電池相較於其他再生能源,擁有不受使用地點限制的優點。太陽能電池又細分成許多種類,如矽晶、三五族、染料敏化、CIGS等太陽能電池,其中矽晶太陽能電池是市場大宗,所以矽晶圓太陽能電池具有發電成本較低、技術成熟及良率較高的優勢,因此未來如何持續降低其發電成本乃是一重要課題。 本論文實驗主題為使用一種簡單且適用於量產型單晶矽太陽能電池製程方法,來製造表面階層式抗反射結構。故本論文提出以微米尺度金字塔紋理蝕刻中,再加入金屬輔助化學蝕刻方法,蝕刻出不同粒徑大小之奈米孔洞,組合成一奈米/微米尺度之階層式紋理結構,增加光吸收之有效路徑長度,使全頻譜反射率降低增加入射光利用。藉此探討於相同微米尺度金字塔紋理中,搭配不同粒徑大小之奈米孔洞的表面形貌對光波長400nm到1100nm頻段之反射率關係,與電流電壓特性曲線之關係。 其中奈米孔洞的製作,可分為兩部分,第一部分為利用電子槍蒸鍍系統,蒸鍍銀薄膜,再利用快速熱退火系統,形成兩步驟之金屬輔助化學蝕刻方法所需銀粒子,於微米尺度金字塔紋理中蝕刻粒徑較大之奈米孔洞。在此探討其大粒徑奈米孔洞與反射率之關係。 第二部分為利用硝酸銀/氫氟酸混合溶液之一步驟金屬輔助化學蝕刻方法,於微米尺度金字塔紋理中蝕刻粒徑較小之奈米孔洞,在此探討其小粒徑奈米孔洞與反射率之關係及電壓電流特性關係。 經由本實驗可發現使用低成本的金屬輔助蝕刻方法,製作表面階層抗反射結構,展現出相當優異的反射率表現,且能有效製作量產型太陽能電池。

並列摘要


In order to solve the energy crisis, many renewable energy resources rise, such as hydro, wind, solar cells. Among so many renewable energy , the best advantage of solar cell is not limited by place .Solar cells are divided into many types ,such as silicon ,III-V ,dye-sensitized ,CIGS solar cells, etc., Silicon base solar cells is the mainstream, so the silicon base solar cells with low cost , mature production technology and high yield , so how to reduce its costs continually is an important issue. This thesis topic is using a simple and mass-produced way to etch hierarchical antireflection structure on industrial silicon based solar cells. However ,this thesis propose that using metal-assisted chemical etching to etch different size nanopores on micro-scale pyramid texture to form hierarchical antireflection structure. This structure enable incident light absorption effectively and low reflectance in 400 nm to 1000 nm. So base on this concept ,we discuss the different nanopores size how to impact the reflectance in 400 nm to 1000 nm ,I-V property and its morphology. The nanopores process can be divided into two parts .First, deposition Ag thin film with thickness 20 nm by E-gun evaporation system ,and then use rapid thermal annealing system to form the bigger Ag particle ,called two step metal-assisted chemical etching. We discuss the relationship between nanopores size and reflectance in this part. Second, We use AgNO3 and HF ,called one step metal-assisted chemical etching, to etch the smaller nanopores on micro-scale pyramid texture. We discuss the relationship between nanopores size and reflectance, I-V property. We use the low-cost metal-assisted etching process, making the surface hierarchical antireflective structure, showing very excellent reflectance performance, and can effectively make mass-produced solar cells.

參考文獻


[4] Seung-Yoon Lee, Hongsik Choi, Hongmei Li, Kwangsun Ji, Seunghoon Nam,Junghoon Choi, Seh-Won Ahn, Heon-Min Lee, Byungwoo Park,“Analysis of a-Si:H/TCO contact resistance for the Si heterojunction back-contact solar cell” Solar Energy Materials and Solar Cells, Vo l. 120, Part A, Pages 412–416, January 2014
[7]PV education, absorption coefficient
[8]Green MA, Keevers MJ., “Optical properties of intrinsic silicon at 300 K.”Progress in Photovoltaics: Research and Applications. 1995 ;3:189 - 192.
[10]Nova 600i, FEI company
[14] M.Foldyna, L.Yu, and P.Roca i Cabarrocas,“Theoretical short-circuit current density for different geometries and organizations of silicon nanowires in solar cells,Solar Energy Materials and Solar Cells, Vol. 117, pp. 645– 651, Octorber2013

延伸閱讀