透過您的圖書館登入
IP:3.144.161.92
  • 學位論文

PCB壓合模組之熱分析與結構最佳化設計

Thermal Analysis and Structural Optimum Design of PCB Bonding Modules

指導教授 : 鍾添東

摘要


本文主要探討製作TFT-LCD面板的PCB壓合機台在加熱過程中,其壓合模組受到溫度效應影響而造成壓合頭的熱變形行為。首先以商業用3D繪圖軟體建立壓合模組之實體模型,之後將建立的模型匯入有限元素軟體ANSYS建立網格,然後分析壓合模組在加熱的過程中,溫度分佈的情況與其所造成的熱變形行為。模擬分析的結果顯示壓合模組會因為各元件之間的熱膨脹係數值不同與溫度差值的不同,而產生熱膨脹變形行為。基於此情況,本文將提出ㄧ針對壓合模組之熱補償機制來改善壓合模組之熱膨脹變形行為,在壓合頭的材料選用SKD61模具鋼,調整座的材料選用SUS303不銹鋼以及夾持元件的材料選用6061-T6鋁合金之條件下可有效的減小壓合模組所產生的熱膨脹變形。另外,本文也調整了調整座與壓合頭間的螺絲間距,在適當的螺絲間距下,可以讓壓合模組之刀具面維持在平整的狀態。最後透過整合型最佳設計程式設定壓合模組之6組加熱棒為設計變數,並進行功率最佳化設計之調整,其結果顯示當壓合模組之加熱棒功率分別調整至最佳值時,壓合模組的溫度分佈會有更為均勻的現象。

並列摘要


This paper investigates the thermal behaviors of PCB bonding modules for TFT-LCD panel under non-uniform temperature distribution caused by the heating process. Firstly, solid models of the PCB bonding modules are generated by commercial CAD software and then imported into commercial finite element analysis software for producing finite element meshes. The non-uniform temperature distribution and its thermal deformation in the heating process are analyzed. The results show that the PCB bonding modules would have the thermal deformation because of materials with different coefficients of thermal expansion. Next, this paper proposes a thermal compensated mechanism for the PCB bonding modules. When the SKD61 material is chosen as the bonding head, SUS303 as the parallel head, and Aluminum 6061-T6 as the clipping parts, the thermal deformation would be decreased effectively. Also, this paper adjusts the gap between parallel head and bonding head to decrease the thermal deformation. With a properly chosen gap value, the surface of the PCB bonding modules would be kept on a flat condition. Finally, an integrated optimum design program will be applied to search the best structural design for the PCB bonding modules with heating powers of the six specific locations chosen as design variables. The optimum design result shows that the PCB bonding modules with special designed heaters has more uniformly temperature distribution.

參考文獻


[3] K. D. Cluff, “Analysis of TAB inner lead fatigue in thermal cycle environments,” IEEE Transactions on Components, Package, and Manufacturing Technology, vol. 18, no. 1, pp. 101-107, 1994
[4] J. K. L. Lai, M. C. Loo, K. Y. Cheng, “Effects of bond temperature and pressure on microstructures of tape automated bonding (TAB) inner lead bonds (ILB) with thin tape metallization,” Electrionic Components and Technology Conference, pp. 819-826, 1995
[5] M. J. Yim, Y. D. Jeon, K. W. Paik, “Reduced thermal strain in flip chip assembly on organic substrate using low CTE anisotropic conductive film,” IEEE Transactions on Electronics Packaging Manufacturing, vol. 23, no. 2, pp. 171-176, 2000
[6] V. A. Chiriac, Y. T. Lee, “Transient thermal analysis of an ACF package assembly process,” IEEE Transactions on Components and Packaging Technology, vol. 24, no. 4, pp. 673-681, 2001
[7] C. Y. Yin, H. Lu, C. Bailey, Y. C. Chan, “Experimental and modeling analysis of the reliability of the anisotropic conductive films,” Electronics Components and Technology Conference, pp. 698-702, 2003

延伸閱讀