透過您的圖書館登入
IP:3.15.171.202
  • 學位論文

反向擾動響應分解與機電慣質網路於光學減震桌之應用

The Applications of Inverse Disturbance Response Decoupling and Mechatronic Inerter Networks to an Optical Table

指導教授 : 王富正

摘要


本論文應用擾動響應分解於光學減震桌之設計與控制。一般光學桌有兩個主要擾動來源–桌面擾動與地面擾動,需採用不同的控制參數以抑制其擾動,所以吾人利用擾動響應分解理論將兩者分開處理,透過被動式雙層減震架構與主動控制達到減震的效果。 本論文包含三個主題:機電慣質網路、反向擾動響應分解、及簡化全桌系統。首先,吾人應用機電慣質網路系統提昇被動減震架構之性能。承襲之前的研究成果,我們使用被動元件隔絕地面擾動,並運用主動式壓電致動器抑制桌面擾動。在本論文中,吾人將機電慣質網路系統應用於被動減震架構,利用機械/電子網路的概念設計外接電路阻抗,以增加系統對地面擾動的隔震性能。 其次,吾人提出反向擾動響應分解的概念。以往為了要隔絕地面擾動,我們採用較軟的被動元件抑制地面擾動,但發現儀器在操作時可能會因為過度搖晃而造成損傷,所以本論文提出反向擾動響應分解架構,改以較硬之被動元件抑制桌面擾動,而以主動控制改善地面擾動響應。 最後,吾人將全桌系統簡化,以降低成本。原本全桌系統由四組桌腳組成,但在分析全桌的運動模態過程中,我們假設桌面為剛體,所以其中的扭曲 (warp) 模態並不存在,因此吾人可將系統簡化,改以三組桌腳組合全桌系統,即可達到與原系統相同的效果,並降低減震成本。 本論文以理論及實驗驗證上述三種控制架構,結果顯示,擾動響應分解技巧確實可以有效地抑制光學減震桌之擾動。

並列摘要


In this thesis, we discuss the design and control of an optical table. An optical table must isolate two main vibration sources: the load disturbances from the machines and the ground disturbances from the environment. Because the suspension settings for suppressing these two disturbances are conflicting, we design a double-layer structure and apply disturbance response decoupling (DRD) theorem to independently treat these two vibration sources. This thesis focuses on the following three topics: mechatronic inerter networks, the inverse DRD structure, and the simplified optical table. First, we apply the mechatronic inerter network to the passive suspension layer. In the previous studies, we used a commercial I-2000 legs to isolate the ground disturbance in a passive way and applied piezoelectric transducers as active actuators to improve the load responses. Therefore, in this thesis we extend these ideas by replacing the I-2000 legs by mechatronic inerter networks and optimize the ground disturbance responses by connecting suitable electric circuits. Second, we propose the inverse DRD structure to the optical table. In the previous works, we used soft passive structure to repress the ground disturbances, and improve the load responses by active control. Though the results demonstrated the effectiveness of DRD techniques, however, the soft passive structure might result in large vibrations to load disturbances and damage the precision machines. Therefore, in this thesis we design an inverse DRD structure that uses stiff elements to suppress the load disturbances in a passive way and improves the ground disturbance responses by active control. Lastly, we simplified the optical table system to reduce the cost of hardware. The original optical table consists of four legs. But we assume the table as rigid body, so that the warp mode can be neglected. Therefore, we can use three legs to construct the optical table that can achieve the same performance as the original design. We design and implement the aforementioned three control structures to a full optical table. Based on the simulation and experimental results, the proposed designs are deemed effective in suppressing system vibrations.

參考文獻


[14] 楊三和,壓電致動元件與機電網路系統於光學減震桌之振動控制與設計,2011年七月
[2] M.C. Smith and F.-C. Wang. Disturbance Response Decoupling and Achievable Performance with Application to Vehicle Active Suspension. International Journal of Control, Vol. 75, No. 12, 946-953. 2002, August.
[3] F.C. Wang and H.A. Chan. Mechatronic suspension design and its applications to vehicle suspension control, Proc. IEEE Conference on Decision and Control, pp. 3769-3774, 2008.
[5] M.C. Smith and F.C. Wang. Controller Parameterization for Disturbance Response Decoupling: Application to Vehicle Active Suspension Control. IEEE Transactions on Control Systems Technology, vol. 10, NO 3, pp. 393-407. 2002, May.
[6] F.C. Wang, M.F. Hong, and J.Y. Yen. Robust Control Design for Vibration Isolation of an Electron Beam Projection Lithography System, Japanese Journal of Applied Physics, June 21, 2010.

被引用紀錄


李仲皓(2017)。慣質網路於銑床工具機減振之應用〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU201700073

延伸閱讀