透過您的圖書館登入
IP:18.188.198.55
  • 學位論文

背景消除供應電壓雜訊的數位鎖相迴路與注入鎖定時脈倍頻器

Digital Phase-Locked Loop with Background Supply Noise Cancellation and Injection-Locked Clock Multiplier

指導教授 : 劉深淵
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


這篇論文的主題主要分為兩個部分,第一部分實現了一個具有背景消除供應電壓雜訊的數位鎖相迴路。藉由使用一個數位穩壓器以及全數位電壓源雜訊消除方法,此數位鎖相迴路可以承受峰對峰值為240mV的供應電壓源雜訊。此數位鎖相迴路使用台積電40奈米製程,面積為0.0195mm2 而功耗在1.1V的供應電壓下為7.23mW。數位振盪器量測到最小的電壓源雜訊敏感度低於0.0261[%-fDCO/%-VDD]。在供應電壓源注入峰對峰值為240mV,頻率為100kHz的弦波雜訊時,量測到的方均根抖動量從原本的56.38ps降低至15.72ps。 第二部分實現了一個具有注入強度校正的注入鎖定時脈倍頻器。通過控制電荷泵電流,可以使用注入強度校正器來校準注入鎖定時脈倍頻器的注入強度。此注入鎖定時脈倍頻器使用台積電40奈米製程,面積為0.0253mm2 而功耗在1V的供應電壓下為4.28mW。參考頻率為150MHz,輸出頻率為2.4GHz以及除數為16。相位噪聲積分範圍從1kHz到100MHz所量測到的方均根抖動量為878fs。

並列摘要


This thesis consists of two parts. The first part implements a digital phase-locked loop (DPLL) with background supply noise cancellation. By using a digital low-dropout regulator and a supply noise cancellation controller, this DPLL can tolerate a supply noise of 240mVPP. The DPLL is fabricated in 40-nm CMOS technology. Its active area is 0.0195mm2 and the total power consumption is 7.23mW from a supply of 1.1V. The minimum measured supply voltage sensitivity of the digital-controlled oscillator is less than 0.0261 [%-fDCO/%-VDD]. With a 100kHz, 240mVPP sinusoidal supply noise, the measured rms jitter is reduced from 56.38ps to 15.72ps. The second part implements an injection-locked clock multiplier (ILCM) with injection strength calibration. By controlling the charge pump currents, an injection strength calibrator is used to calibrate the injection strength of the ILCM. This ILCM is fabricated in 40-nm CMOS technology. Its active area is 0.0253mm2. The power consumption of the ILCM is 4.28mW from a supply of 1V. The reference frequency is 150MHz and the output frequency is 2.4GHz with a divider ratio of 16. The measured rms jitter integrated the phase noise from 1kHz to 100MHz is 878fs.

參考文獻


[1] E. Alon, J. Kim, S. Pamarti, K Chang, and M. Horowitz, “Replica compensated linear regulators for supply-regulated phase-locked loops,” IEEE J. Solid-State Circuits, vol. 41, no. 2, pp. 413–424, Feb. 2006.
[2] T. Wu, K. Mayaram, and U.-K. Moon, “An on-chip calibration technique for reducing supply voltage sensitivity in ring oscillators,” IEEE J. Solid-State Circuits, vol. 42, no. 4, pp. 775–783, Apr. 2007.
[3] S. Y. Kao, and S. I. Liu, “A digitally-calibrated phase-locked loop with supply sensitivity suppression,” IEEE Trans. Very Large Scale Integr.(VLSI) Syst., vol. 19, no. 4, pp. 592-602, Apr. 2011.
[4] Y. C. Huang, C. F. Liang, H. S. Huang, and P. Y. Wang, “A 2.4GHz ADPLL with digital-regulated supply-noise-insensitive and temperature-self-compensated ring DCO,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 270-271, Feb. 2014.
[5] A. Elshazly, R. Inti, W. Yin, B. Young, and P. K. Hanumolu, “A 0.4-to-3 GHz digital PLL with PVT insensitive supply noise cancellation using deterministic background calibration,” IEEE J. Solid-State Circuits, vol. 46, no. 12, pp. 2759–2771, Dec. 2011.

延伸閱讀