透過您的圖書館登入
IP:3.142.99.19
  • 學位論文

以模式參考強健適應性控制實現多軸離岸風機登塔系統主動調平控制之研究

Leveling Control of an Offshore Turbine Access System with Multi-Axial Active Motion Compensation Using Model Reference Robust Adaptive Control

指導教授 : 江茂雄
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


離岸風機登塔系統可大幅提升施工與運維人員在運輸船舶與離岸風機之間移動的安全性。本篇論文提出一個四自由度的主動式補償機構,來補償端效器(end-effector)受波浪影響所產生的縱移(surge)位移、起伏(heave)位移、縱搖(pitch)角度以及橫搖(roll)角度,以及設計一模式參考強健適應性控制器(MRRAC)使施工運維人員立於登塔系統上依然維持一定的補償性能,避免人員的落海風險。 風機登塔系統的主動運動補償會透過機構動態模擬軟體(ADAMS)結合MATLAB/SIMULINK介面進行整合模擬,而實際實驗則以全尺實驗機台結合MATLAB/SIMULINK Desktop Real-Time介面完成,無論模擬或實驗都會在符合台灣海峽的浪況下進行空載與負載測試,來驗證登塔系統主動運動補償的有效性以及控制器的強健性。為了在模擬與實驗中執行登塔系統閉迴路控制,首先以變換矩陣建構順向運動學再經由逆向運動學求出各個子系統的補償目標。接著因本論文的登塔系統以電液伺服系統驅動,因此建立液壓伺服系統的數學模型以及機構的動力學模型來進行控制器的設計與整合模擬。藉由簡化液壓伺服系統與機構的非線性模型,可將強健適應性控制理論套用於簡化後的模型並設計出合適的模式參考強健適應性控制器。 透過整合模擬與實驗的結果可以推斷,本論文所提出的四軸登塔系統能有效減小端效器的縱移位移、起伏位移、縱搖角度以及橫搖角度,以及模式參考強健適應性控制器在多軸登塔系統的模擬與實驗中展現足夠的強健性,不論在空載或是負載條件下皆可維持相當的補償性能。

並列摘要


Turbine access system (TAS) plays an important role for safely transferring technicians between crew transfer vessel (CTV) and offshore turbine tower in offshore wind farm operation and maintenance (O M) activities. This thesis proposed a four degrees of freedom (DOF) mechanism, so-called four-axial TAS, to compensate the surge displacement, heave displacement, pitch angle and roll angle of end-effector, and developed a model reference adaptive controller (MRAC) with robust adaptive law, so-called model reference robust adaptive controller (MRRAC), to keep the compensation performance when the technician is standing on the end-effector. The active motion compensation (AMC) of multi-axial TAS was implemented by co-simulation analysis in automatic dynamic analysis of mechanical system (ADAMS) integrated with MATLAB/SIMULINK interface and conducted on experiment with multi-axial full-scale TAS test rig and MATLAB/SIMULINK Desktop Real-Time interface under wave condition of Taiwan Strait and load test. To realize the close-loop control in both co-simulation and experiment, we constructed the forward kinematics by transformation matrix and derived the compensation targets by inverse kinematics. Because the TAS proposed in this thesis was driven by electro-hydraulic servo system, we derived the mathematical model of electro-hydraulic valve-controlled servo system and dynamic model of mechanism system for both controller design and co-simulation. After simplifying the nonlinear model of electro-hydraulic system and mechanism system, we applied the robust adaptive control theory to design a MRRAC. The co-simulation and experiment results verified that the four-axial TAS could significantly reduce the surge displacement, heave displacement, pitch angle and roll angle of end-effector, and the MRRAC can have a satisfactory performance with load test.

參考文獻


[1] H. Stumpf and B. Hu, "Offshore wind access 2018," Wind Energy, vol. 2017, p. 2016, 2018.
[2] "Offshore Wind Turbine Access System Trial Completed." https://www.maritimeprofessional.com/news/offshore-wind-turbine-access-system-228108 (accessed May 25, 2021).
[3] "Access Systems - Wind and Oil Gas • Osbit.pdf." https://www.osbit.com/equipment/offshore-access/ (accessed May 26, 2021).
[4] B. Hu and C. Yung, "Offshore Wind Access Report 2020," 2020.
[5] "Ampelmann Nabs Five Gangway Orders in Offshore." https://www.oedigital.com/news/479734-ampelmann-nabs-five-gangway-orders-in-offshore-wind-space (accessed May 26, 2021).

延伸閱讀