透過您的圖書館登入
IP:18.224.214.215
  • 學位論文

應用多目標演化式演算法於離岸風機健康監測系統之加速度感測器最佳化佈設方法研究

A Multi-objective Approach to Optimal Acceleration Sensor Placement for Vibration Test in Global Level Offshore Wind Health Monitoring

指導教授 : 黃心豪

摘要


感測器最佳化佈設的目的是為了找到能夠盡可能多的獲取結構健康監測所需要的結構動力資訊的感測器佈設方案。本研究提出以多目標演化式演算法結合粒子群演算法的思路,以模態振型線性獨立,採集數據的冗餘性和振動響應訊號作為三個優化目標,同時結合MAC矩陣進行感測器數量的預估,最後提出一種基於距離衡量的多目標決策的策略作為最終解的選擇方案。接著研究了將該方法用於610公尺高的廣州塔結構上和其它文獻中的結果做對比,結果表明提出的方法在多目標情況下有更均衡的表現且在所提出的指標下表現更好。然後在實驗室架設一個三層框架結構,以加速度感測器驗證多目標最佳化方案的有效性,實驗結果顯示結構模態資訊都能夠完整獲得,且在和其他方法的結果比較與計算模態分析結果相吻合。最後,將感測器最佳化佈設分析流程應用於實際風機有限元模型的分析。

並列摘要


The objective of optimal sensor placement (OSP) is to obtain a sensor layout that gives as much information of the dynamic system as possible in structural health monitoring (SHM). In this paper, a modified multi-objective evolutionary algorithm combined with particle swarm optimization (PSO) is adopted. The three optimization objectives are linear independence of mode shapes, dynamic information redundancy and vibration response signal strength. Moreover, a multi-objective decision-making (MODM) strategy based on distance measurement is proposed as the final solution selection method. Then, the technique is applied to the 610-meter-high Guangzhou Tower and compared with the results in other literatures. The results show that the proposed method has a more balanced performance under multi-objective conditions and performs better under the proposed MODM strategy. Next, a three-story frame structure is set up in the laboratory to valid the effectiveness of the multi-objective optimization method by acceleration sensors. The experimental results show that the structural modal information can be obtained completely, and the results of comparison with those of other methods are consistent with the results of computational modal analysis. Finally, the OSP analysis process is applied to the analysis of the offshore wind support structure finite element model.

參考文獻


[1] Kubrusly CS, Malebranche H. Sensors and controllers location in distributed systems—A survey. Automatica. 1985;21:117-28.
[2] Papadopoulos M, Garcia E. Sensor Placement Methodologies for Dynamic Testing. AIAA Journal. 1998;36:256-63.
[3] Li DS, Li HN, Fritzen CP. The connection between effective independence and modal kinetic energy methods for sensor placement. Journal of Sound and Vibration. 2007;305:945-55.
[4] Udwadia FE. Methodology for Optimum Sensor Locations for Parameter Identification in Dynamic Systems. 1994;120:368-90.
[5] Heylen W, Sas P. Modal Analysis Theory and Testing. 2006.

延伸閱讀