透過您的圖書館登入
IP:3.138.125.2
  • 學位論文

以撓褶式機構設計並實現之新型三自由度 電磁致動奈米定位平臺

Design and Implementation of a New 3-DOF Electromagnetic-Nanopositioner Utilizing Flexure Mechanism

指導教授 : 傅立成
共同指導教授 : 陳美勇

摘要


本論文研究之目的是設計並實現一新型、長行程、三自由度運動的奈米級定位平臺,此平臺能夠整合並應用於原子力顯微鏡來達成長行程與精密定位之需求。在本論文中,對於硬體架構、電磁致動器設計以及高效能的控制器設計都有完整的介紹。相較於一般市面上採用壓電方式致動之定位平臺,雖然具有奈米等級的定位精度,然而其運動的範圍僅侷限於微米等級,故本論文所設計之定位平臺期望擁有較大行程運動的能力(此指公釐等級),並搭配本研究室自行設計成功的『高精度光纖干涉儀』來提升平臺定位精度到奈米之等級。 本論文所設計的平臺在X與Y二維度上之最大行程可達±0.5mm,且最高解析度為165nm,平臺整體尺寸為100×100×30 mm3。平臺主體係採用一體成型的XY二維撓性結構作為無乾摩擦力的導引機構;致動器系統採用四組類音圈馬達原理所設計之電磁致動器,利用兩兩相互正交的排列方式來驅動平臺以達成三個自由度的運動;量測系統則是採用三組高精度光纖干涉儀作為平臺位置訊號之回授。再者,在本論文中,為了確保定位及追蹤時平臺之三自由度皆能保持穩定並符合系統性能之要求,我們提出一可適性滑動模式控制器,在系統參數變化以及外在干擾之不確定因素下,能順利達成系統之控制目標。經由一連串令人滿意的模擬與實驗結果中,可以證實本論文所設計之定位平臺可以達成長行程、高精度以及低成本之目標。

並列摘要


A novel, compact and three degree-of-freedom (DOF) nanopositioner with large travel ranges is presented, which can be integrated with atomic force microscope (AFM) for precise positioning. The design of the nanopositioner utilizes the monolithic parallel flexure mechanism with the built-in electromagnetic actuators and the fiber interferometers to achieve the 3-DOF motion. The whole control architecture takes the three configuration parameters measured by the three fiber interferometers and endeavors to control the 3-DOF motion through regulating the current in the electromagnetic actuators. To let the compact system be more robust and stabler in positioning, we propose an adaptive sliding-mode controller. The so developed robust control architecture consists of three components: 1) sliding mode controller, 2) adaptive law, and 3) force allocation. From the provided experimental results, satisfactory performances of the hereby developed system, including stiffness and precision, have been successfully demonstrated.

參考文獻


[1] A. Daniele; S. Salapaka; M.V. Salapaka; M. Dahleh; “Piezoelectric scanners for atomic force microscopes: design of lateral sensors, identification and control,” in Proc. of American Control Conference, Vol.1, pp.253 – 257, 1999.
[2] T. Galante et al., “Design, modeling, and performance of a high force piezoelectric inchworm motor,” in Proc. Smart Structures and Integrated Systems, Vol. 3329, pp.756–767, 1998.
[3] N. Shimizu, T. Kimura, T. Nakamura, and I. Umebu, “An ultrahigh vacuum scanning tunneling microscope with a new inchworm mechanism,” J. Vac. Sci. Tech. A, Vol.8, no. 1, pp.333–335, 1990.
[4] P. E. Tenzer and R. B. Mrad, “A Systematic Procedure for the Design of Piezoelectric Inchworm Precision Positioners,” in IEEE/ASME Trans. on Mechatronics, Vol.9, no.2, 2004.
[6] S.T. Smith, Flexures: Elements of Elastic Mechanisms, Gordon & Breach, Amsterdam, 2000

延伸閱讀