透過您的圖書館登入
IP:18.224.64.226
  • 學位論文

N型矽晶圓太陽能電池模擬

Simulation of N-type Wafer-based Solar cells

指導教授 : 劉致為
本文將於2026/07/22開放下載。若您希望在開放下載時收到通知,可將文章加入收藏

摘要


在本篇論文中,著重研究n型矽晶圓太陽能電池的光電性質之模擬。透過模擬可以降低優化太陽能電池的研究成本以及提供製程優化的方向。二維的模擬已經發展成熟,但是有些太陽能電池的特性靠著二維是無法被詮釋出來的,三維模擬可以提供更全面的結構建構,光學的反射、電極的排列、部分穿隧的效應等等,在此,我們將利用TCAD模擬軟體進行以三維的太陽能電池模擬為主。 論文第二章中,主要探討鈍化射極背面局部擴散太陽電池(PERL)與鈍化射極背面全部擴散(PERT)的模擬,包括改變電池的結構,藉由改變電池各部分的參雜濃度來優化電池的效率,以及電池的電極幾何,最後我們提出了一種新的蜂巢狀電極排列結構。第三章中,主要探討指叉式背電極太陽能電池(IBC)的模擬,除了表面紋理結構以及參雜濃度優化之外,應用了在第二章中所述的蜂巢狀電極排列結構,同時也包括異質接面結合本質矽薄膜太陽電池(HIT-IBC)的模擬。第四章中,主要探討穿隧氧化層鈍化電極太陽能電池(TOPcon)的模擬,包括多晶矽與非晶矽的背表面場差異,以及穿隧氧化層的效應以及一致性帶來的影響,最後我們提出了一種新的太陽能電池結構,部分穿隧氧化層鈍化指叉式背電極(Partial TOPIBC)太陽能電池,結合指叉式背電極與穿隧氧化層鈍化電極太陽能電池的優點。

並列摘要


In this thesis, we focus on the simulation of n-type wafer-based solar cells. Through modeling and simulation, the performances of new photovoltaic devices can be predicted, and R&D costs can be reduced. Although two dimensional model simulation is well developed, it still fail to interpret some features of solar cells. Instead, three dimensional simulation can provide a more comprehensive structure, including the optical reflectivity, arrangement of electrodes and partial tunneling effect and so on. Therefore, we use technology computer aided design (TCAD) simulation software to carry out three dimensional model based simulation. In chapter 2, we focus on the simulation of passivated emitter rear locally diffused (PERL) and passivated emitter rear totally diffused (PERT) solar cells, including changes in cell structure, doping concentration, and electrode geometry. At the end of the chapter, we propose a new structure featuring honeycomb arrangement of electrodes. In chapter 3, we focus on the simulation of interdigitated back contact (IBC) solar cells. In addition to optimize the cell performance, we apply the honeycomb structure described in chapter 2 on the IBC cells along with the simulation of heterojunction with intrinsic thin layer IBC (HIT-IBC) solar cells. Finally, in chapter 4, we focus on the simulation of tunnel oxide passivated contact (TOPcon) solar cells, including the difference between n+ polysilicon and n+ amorphous silicon, the effect of tunnel oxide, and tunnel oxide uniformity issue. At the end of chapter 4, we propose a new solar cell structure, partial tunnel oxide passivated interdigitated back contact (Partial TOPIBC) solar cell, combined with the advantages of IBC solar cells and TOPcon solar cells.

參考文獻


[1.1] A. Goodrich, P. Hacke, Q. Wang, B. Sopori, R. Margolis, T. L. James, M. Woodhouse, “A wafer-based monocrystalline silicon photovoltaics road map: Utilizing known technology improvement opportunities for further reductions in manufacturing costs” Solar Energy Materials & Solar Cells 114 (2013) 110–135
[1.2] D. A. Clugston, P. A. Basore, "PC1D Version 5: 32-bit solar cell modeling on personal computers" Proc. 26th IEEE Photovoltiac Specialists Conference, Anaheim, pp. 207–210, 1997.
[2.1] J. Zhao, A. Wang and M.A. Green, “24.5% Efficiency Silicon PERT Cells on MCZ Substrates and 24.7% Efficiency PERL Cells on FZ Substrates”, Progress in Photovoltaics, 7, 1999, pp. 471-474.
[2.2] J. E. Cotter, J. H. Guo, P. J. Cousins, M. D. Abbott, F. W. Chen, K. C. Fisher, “P-Type Versus n-Type Silicon Wafers: Prospects for High-Efficiency Commercial Silicon Solar Cells” IEEE Trans, Electron Devices 53:1893-1901 (2006).
[2.3] N. Wehmeier, A. Nowack, B. Lim, T. Brendemühl, S. K. Schröder, J. Schmidt, R. Brendel, T. Dullweber, “21.0%-efficient screen-printed n-PERT back-junction silicon solar cell with plasma-deposited boron diffusion source” Solar Energy Materials and Solar Cells, 2016

延伸閱讀