透過您的圖書館登入
IP:18.190.219.65
  • 學位論文

應用於次世代無線通訊之射頻前端接收機電路

Receiver RF Front-end Circuits for Next-generation Wireless Communication

指導教授 : 林宗賢
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文實現了適用於可調動式中頻接收機之高頻前端電路,電路包含了低雜訊放大器、第一級的降頻混頻器還有一個I/Q 的混頻器做為第二級的降頻混頻器。 在高頻前端電路的第一級為一個可調增益式的低雜訊放大器。該可調式增益為避免輸入訊號過大而造成電路飽和。本作品使用台積電40 奈米製程,系統功耗為15毫瓦,在頻率為360 億赫茲時有最大的增益為10 dB, 噪音雜訊為5.8 dB。增益調整的範圍為10 dB。 緊接在後的是一個將訊號由頻率 360 億赫茲降轉到70 億赫茲的降頻混頻器。 並且採用分流電流的方式來降低雜訊指數。本作品使用台積電40 奈米製程,系統 功耗為4.5 毫瓦,由於一些EM 模型上的不確定造成增益最大為-20.8 dB,輸入1 dB 增益壓縮點為 6 dBm。 最後一級為一個具 I/Q 相位調變的降頻混器,該混頻器將訊號由頻率約70 億 赫茲降轉到 10 億赫茲以內。此外,還實現了一個除頻器來產生所需的四個相位。 本作品使用台積電40 奈米製程,系統功耗包含量測所需的緩衝器為10 毫瓦,增 益最大為17 dB,輸入1 dB 增益壓縮點為 -14 dBm。

並列摘要


In this thesis, an RF front-end which is a sliding IF receiver including a low-noise amplifier, a first stage down-conversion mixer and an I/Q mixer as the second stage are proposed in a 1.1-V supply. The first stage of proposed RF front-end presents a variable gain control low noise amplifier to keep different input magnitude from saturation of circuit. This work is fabricated in TSMC 40-nm CMOS technology. The total power consumption is 15 mW, the highest gain is 10 dB and noise figure is 5.8 dB at 36 GHz. The variable gain control can adjust the gain more than 10 dB. The following stage is a down-conversion mixer which converts frequency from 36 GHz to 7 GHz. The work introduces a current-bleeding technique to improve the noise figure. This work is fabricated in TSMC 40-nm CMOS technology. The total power consumption is 4.5 mW. With some EM model uncertain, the conversion gain is -20.8 dB and input P1dB is 6 dBm. The latest stage is an I/Q down-conversion mixer which converts frequency from 7 GHz to below 1 GHz. Besides, to generate four phase, a CML divider is also implemented. This work is fabricated in TSMC 40 nm CMOS technology. The total power consumption of I/Q mixer including the buffer for measurement is 10 mW. The conversion gain is 17 dB, NF is 8.88 dB and the input P1dB is -14 dBm.

並列關鍵字

RF front-end Low-noise amplifier Mixer

參考文獻


[1] H. H. Hsieh and L. H. Lu, “A 40-GHz Low-Noise Amplifier With a Positive-Feedback Network in 0.18- μm CMOS,” IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 8, pp. 1895-1902, Aug. 2009.
[2] M. Hossain and A. C. Carusone, “A 19-GHz broadband amplifier using a gm-boosted cascode in 0.18-μm CMOS,” Proc. IEEE CICC, pp. 829– 832, Sep. 2006.
[3] S. Shahramian, S. P. Voinigescu, and A. C. Carusone, “A 30-GS/sec track and hold amplifier in 0.13-μm CMOS technology,” Proc. IEEE CICC, pp. 493–496, Sep. 2006.
[4] T. O. Dickson, K. H. Yau, T. Chalvatzis, A. M. Mangan, E. Laskin, R. Beerkens, P. Westergaard, M. Tazlauanu, M.-T. Yang, and S. P. Voinigescu, “The invariance of characteristic current densities in nanoscale mosfets and its impact on algorithmic design methodologies and design porting of Si(Ge) (Bi)CMOS high-speed building blocks,” IEEE J. Solid-State Circuits, vol. 41, no. 8, Aug. 2006.
[5] T. H. Lee, Planar microwave engineering: a practical guide to theory, measurement, and circuits. Cambridge University Press, 2004.

延伸閱讀