透過您的圖書館登入
IP:18.227.161.132
  • 學位論文

摩擦電能量蒐集元件內摩擦電層與金屬電極層表面微奈米結構之綜合研究分析

Comprehensive Analysis of Interfacial Micro-Nano Structures in Triboelectric Layer and Metal Layer of Triboelectric Energy Harvester

指導教授 : 廖洺漢

摘要


近年來,摩擦電能量蒐集元件為非常熱門之研究主題,並在不同的研究領域上有許多應用。本論文主要目標為在摩擦電能量蒐集元件之金屬電極層與摩擦電層(聚二甲基矽氧烷, Polydimethylsiloxane, PDMS)表面上製作微奈米結構(實驗組),以相同尺度且金屬電極層上不具微奈米結構之摩擦電能量蒐集元件(對照組)並比較兩者輸出。 利用曝光微影技術(Photolithography)與乾濕蝕刻技術(Dry and wet etching),可做出金字塔凹槽陣列矽基板作為PDMS翻模之模板,透過對PDMS翻模,可在PDMS表面形成金字塔陣列結構,並作為摩擦電層(Triboelectric layer)放置於下電極,同時利用電子束蒸鍍技術(Electron beam evaporation)在矽基板上蒸鍍銀(Ag)作為上下電極,並利用乾蝕刻技術於上電極中製作方形柱狀陣列微奈米結構,將其組裝後即製作出摩擦電能量蒐集元件(Triboelectric energy harvester, TEH)。 本論文在摩擦電層中製作了三種底邊長之金字塔陣列,分別為:10μm、15μm、20μm,其金字塔間距皆與底邊長相同;而上電極之方形柱狀陣列邊長分別為:10μm、15μm、20μm,其間距也與邊長相同。當給予未達飽和的壓力(Saturation pressure)時,具有金屬電極層微奈米結構之摩擦電能量蒐集元件量得之開路電壓(Open-circuit voltage)與短路電流(Short-circuit current)優於不具金屬電極層微奈米結構之摩擦電能量蒐集元件,且底邊長越小的結構將有更大的接觸面積,即具有更良好的輸出效能。此一結果與數學模型理論之趨勢相符,因此,透過在金屬電極層上製作微奈米結構,可進一步提升摩擦電能量蒐集元件之效能。

並列摘要


In recent years, triboelectric energy harvesting devices have become very popular research topic and have many applications in different research fields. The main goal of this dissertation is to fabricate micro-nanostructures on the surface of the metal layer and triboelectric layer (Polydimethylsiloxane, PDMS) of the triboelectric energy harvesting device. At the same scale, compare the voltage and current output of the triboelectric energy harvesting device with or without the metal layer micro-nanostructure. By using photolithography, dry etching and wet etching techniques, a pyramid groove array substrate can be fabricated and used as a template for PDMS replica-modeling process. Through the PDMS mold transformation, a pyramid array structure can be formed on the PDMS surface, which can be placed on the lower electrode as a triboelectric layer. On the other hand, this dissertation use electron beam evaporation to deposit silver (Ag) on the silicon substrate as the upper and lower electrodes, and using dry etching technique to fabricate the lower electrode. After the square columnar micro-nanostructure is assembled, a triboelectric energy harvester (TEH) is fabricated. In this dissertation, three kinds of base length of pyramid arrays are fabricated in the triboelectric layer: 10μm, 15μm, and 20μm, and the pitch of the pyramids is the same as the length of the bottom side, while the lengths of the square columns of the lower electrode also are: 10μm, 15μm, 20μm, and the pitch is the same as the side length. When the unsaturated pressure is given, the open-circuit voltage and short-circuit current of the triboelectric energy harvester with micro-nanostructure metal layer are better than those without micro-nanostructure. The smaller the base length of the structure, the larger contact area triboelectric energy harvester will have, and large contact area lead to a better output performance. This result is consistent with the trend of the mathematical model. Therefore, the performance of the triboelectric energy harvester can be further improved by fabricating the micro-nanostructure on the metal layer.

參考文獻


[1] World Energy Outlook-2017 (https://www.iea.org/weo2017/#section-1-1)
[2] Zhong Lin Wang, “Nanogenerators for self-powered devices and systems”,GeorgiaInstitute of Technology, SMARTech digital repository, 2011.
[3] Zhong Lin Wang, “On Maxwell's displacement current for energy and sensors: the origin of nanogenerators”, Mater. Today, vol. 20, issue. 2, pp. 74-82, Mar. 2017.
[4] Z. Wen, J. Chen, M.H. Yeh, H. Guo, Z. Li, X. Fan, T. Zhang, L. Zhu, Z.L. Wang, Blow-driven triboelectric nanogenerator as an active alcohol breath analyzer. Nano Energy 16, 38–46 (2015).
[5] 行政院科技會報-行政院生產力4.0發展方案 (https://www.bost.ey.gov.tw/cp.aspx?n=94090FED75EFA410)

延伸閱讀