透過您的圖書館登入
IP:13.59.231.155
  • 學位論文

常見室內植物移除甲醛能力之研究

Studies on Removal of Formaldehyde by Indoor Plants

指導教授 : 葉德銘

摘要


甲醛為室內常見之揮發性有機物質(Volatile organic compounds, VOCs),且為人類致癌物。前人研究指出應用植物可減少室內甲醛,本研究將植物置於甲醛濃度為1 ± 0.01 μL•L-1之密閉熏氣箱(0.128 m3)內測試常見二十種室內植物、四種切花與五種切葉甲醛移除能力,並探討植物於不同光強度、CO2濃度及不同植株部位長時間置於甲醛環境下,對植物甲醛吸收能力之影響。 參試之二十種室內植物皆可吸收甲醛,將植物置於熏氣箱後,箱內之甲醛濃度逐漸減少,以盆徑15-cm的盆菊‘金山’、盆徑9-cm的波士頓腎蕨‘Bostoniensis’與白鶴芋‘帕拉斯’單盆移除能力最好,分別於試驗第一小時可移除熏氣箱內0.78 μL•L-1、0.64 μL•L-1與0.56 μL•L-1之甲醛。而仙客來‘Bright Red Compact’、盆菊‘金山’及中斑香龍血樹的單位葉面積甲醛移除效率最高,換算移除熏氣箱中一半甲醛濃度之時間(T50%),T50% 分別為21 ± 2 min,22 ± 3 min與27 ± 8 min。 參試四種切花與五種切葉皆可移除甲醛。菊花‘林克小白’甲醛移除能力為參試切花中最高,於試驗8小時內可移除熏氣箱內0.60 μL•L-1之甲醛。去除葉片的切花其甲醛移除能力明顯較有葉片之切花低。各切花移除甲醛能力與熏氣箱內相對濕度變化趨勢類似,顯示甲醛移除能力與蒸散作用有關。五種切葉中以葉面積最多之斑葉蜘蛛抱蛋和八角金盤的單位葉面積甲醛移除能力最好,分別於試驗4小時內每cm2葉面積可移除0.22 μg和0.23 μg 之甲醛。五種切葉單位葉面積甲醛移除能力與淨光合作用速率和氣孔導度呈顯著正相關。 七種天南星科植物於黑暗下仍可移除少量甲醛。白鶴芋‘帕拉斯’移除甲醛能力隨淨光合作用速率與氣孔導度上升而增加,其他六種天南星科植物於光強度80 μmol•m-2•s-1至120 μmol•m-2•s-1時單位葉面積移除能力達飽和;於0 μmol•m-2•s-1至160 μmol•m-2•s-1之光強度下氣孔導度變化趨勢與六種天南星科植物單位葉面積甲醛移除能力類似(R2 = 0.67),但淨光合作用速率則隨光強度上升而增加,尚未達飽和。 置放白鶴芋‘帕拉斯’之熏氣箱內CO2濃度於黑暗環境下隨甲醛處理時間增加而上升,但於光環境下則下降。高CO2濃度(1134.8 μL•L-1)使白鶴芋‘帕拉斯’甲醛移除能力下降,光強度由80 μmol•m-2•s-1增至160 μmol•m-2•s-1可提升白鶴芋‘帕拉斯’對甲醛吸收能力。 測試黛粉葉‘白玉’地上部、整株、地下部及高溫殺菌後地下部四個部位連續7天甲醛移除能力。黛粉葉‘白玉’地上部和整株處理於連續7天甲醛處理中,每天皆可持續移除熏氣箱中甲醛,又以整株處理移除能力最好。黛粉葉‘白玉’地上部及整株兩處理之淨光合作用速率、葉綠素計讀值與葉綠素螢光值於試驗期間皆沒有下降。黛粉葉‘白玉’地下部處理者,於連續7天甲醛處理中,每天皆可持續移除熏氣箱內約60%之甲醛。高溫殺菌後地下部其移除能力隨試驗天數增加而上升,於試驗第7天甲醛移除能力與未經高溫殺菌地下部沒有明顯差異。

並列摘要


Formaldehyde is one of the common indoor volatile organic compounds and has been classified as a human carcinogen. Plants can reduce formaldehyde concentration as shown in previous reports. In this study, we determined removal capacity of formaldehyde by twenty species/cultivars of indoor plants, four species of cut flowers, and five species of cut leaves. Plant materials were exposed to formaldehyde (1 ± 0.01 μL•L-1) in airtight chambers (0.128 m3) and the amount of formaldehyde removal was assessed under various light intensities, CO2 concentrations, and long term formaldehyde exposure conditions. Twenty indoor plant species/cultivars were found to be effective in reducing formaldehyde concentration, which decreased with time. Potted plants of Dendranthema ×grandiflorum (Ramat.) Kitam. ‘Jin-Shan’ , Nephrolepis exaltata (L.) Schott ‘Bostoniensis’ and Spathiphyllum floribundum (Linden & André) N. E. Br. ‘Palas’ had the highest formaldehyde absorption rates of 0.78 μL•L-1, 0.64 μL•L-1 and 0.56 μL•L-1 per pot, respectively, during the first one hour exposure. Cyclamen persicum Mill. ‘Bright Red Compact’, D. ×grandiflorum (Ramat.) Kitam. ‘Jin-Shan’, and Dracaena fragrans (L.) Ker Gawl. ‘Massangeana’ had highest removal efficiencies, as calculated on a leaf area basis, with the shortest time to reduce 50% of the initial concentration (T50%) at 21 ± 2, 22 ± 3, and 27 ± 8 min, respectively. The cut flowers and cut leaves could remove formaldehyde. Among the cut flowers tested, chrysanthemum had the highest formaldehyde absorption, and could remove 0.60 μL•L-1 formaldehyde concentration in the chambers during the 8 h experiment. Formaldehyde removal rate decreased when leaves were detached. Formaldehyde absorption by cut flowers increased with increasing relative humidity in the chamber. Among the cut leaves tested, Aspidistra elatior Blume ‘Variegata’ and Fatsia japonica (Thunb.) Decne. & Planch. had the highest removal efficiencies of 0.22 μg and 0.23 μg per cm2 leaf area during the 4 h exposure. Linear relationships existed between formaldehyde removal and net photosynthesis rate (r = 0.72***) or stomatal conductance (r = 0.72***), respectively, for five species of cut leaves. Seven Araceae plants could reduce small amounts of formaldehyde in dark conditions. Formaldehyde absorption, net photosynthetic rate, and stomatal conductance increased in S. floribundum (Linden & André) N. E. Br. ‘Palas’ as light intensity increased from 0 μmol•m-2•s-1 to 120 μmol•m-2•s-1 PPF. The net photosynthetic rate of other six Araceae plants increased linearly with increasing light intensity, while saturated formaldehyde absorption occurred at 80 μmol•m-2•s-1 to 120 μmol•m-2•s-1 PPF. When plants of S. floribundum (Linden & André) N. E. Br. ‘Palas’ were placed in the chambers, carbon dioxide concentration in the chambers increased in the dark and decreased in the light conditions. High CO2 concentration at 1134.8 μL•L-1 reduced formaldehyde absorption of plants, while more formaldehyde was reduced by plants with increasing light intensity from 80 μmol•m-2•s-1 to 160 μmol•m-2•s-1 PPF. Formaldehyde removal efficiency of Dieffenbachia maculata (Lodd. et al.) G. Don ‘Camilla’ was assessed by shoot, whole plant, root zone, and root zone with sterilization. The formaldehyde removal by shoot was lower than by whole plant. Exposure to formaldehyde did not alter net photosynthetic rate, SPAD-502 value and Fv/Fm in the recently fully developed leaves in shoot or whole plant during the seven successive days. Root zone could remove 60% initial formaldehyde concentration in the chambers each day for successive seven days. Formaldehyde absorption of root zone after sterilization increased with time. Regardless of root zone sterilization or not, no significant difference was observed in formaldehyde absorption on day 7.

參考文獻


陳彥宇. 2007. 常見室內植物對甲醛及二氧化碳之吸收及反應. 國立臺灣大學植物病理與微生物學硏究所碩士論文.
Achkor, H., M. Díaz, M.R. Fernández, J.A. Biosca, X. Parés, and M.C. Martínex. 2003. Enhance formaldehyde detoxification by overexpression of glutathione - dependent formaldehyde dehydrogenase from Arabidopsis. Plant Physiol. 132:2248-2252.
BCC Research. 2009. Environment, Report Code: ENV003C. U.S. Indoor Air Quality Market. Wellesley, MA. 25 April 2010. http://www.bccresearch.com/report /ENV003C.html
Bholah, R. I. Fagoonee, and A.H. Subratty. 2000. Sick building syndrome in Mauritius: are symptoms associated with the office environment? Indoor Build Environ. 9:44-51.
Bruno. P., M. Caselli, G. deGennaro, S. Lacobellis, and M. Tutino. 2008. Monitoring of volatile organic compounds in non-residential indoor environments. Indoor Air 18:250-256.

被引用紀錄


曾昱誠(2016)。室內植栽應用於居住空間之認知調查研究〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu201700003
林岳遠(2015)。植物生態箱中不同介質及其狀態對降低箱中CO2含量之影響〔碩士論文,國立屏東科技大學〕。華藝線上圖書館。https://doi.org/10.6346/NPUST.2015.00237
廖建雄(2014)。十三種蕨類植物於不同光照強度下二氧化碳移除及 釋氧能力分析〔碩士論文,國立屏東科技大學〕。華藝線上圖書館。https://doi.org/10.6346/NPUST.2014.00225
陳琳(2013)。光質對室內植物光合作用表現及甲醛移除能力之影響〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2013.02167
陳舒罄(2013)。光強度、苯濃度與介質對娃娃朱蕉移除苯之影響〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2013.01760

延伸閱讀