透過您的圖書館登入
IP:18.216.94.152
  • 學位論文

鋁輪圈撞擊測試之有限元素分析

Finite Element Analysis for Impact Test of Aluminum Rim

指導教授 : 陳復國

摘要


基於安全的考量與法規的要求,輪圈的結構強度需通過一連串的測試,然而在開發成品過程中,將耗費相當多的時間與成本,為了減少時間與成本,通常會採用電腦輔助工程分析(Computer-Aided Engineering,CAE)技術從事輪圈的設計。   本論文主要研究輪圈衝擊實測之CAE模擬分析,利用有限元素法軟體LS-DYNA從事動態模擬分析、ABAQUS/Standard從事靜態模擬分析,探討輪圈受重錘撞擊時的破壞行為。   在模型建立方面,針對輪圈13度與90度的邊界條件提出說明。此外,亦對線性四面體元素及二階四面體元素進行收斂性分析,指出可行之元素大小及元素種類。   在模擬分析方面,比較不同等效動態負載模式,並且發現以能量法修正的等效負載最能符合動態模擬的結果。此外,針對彈性與彈塑性材料之間,以應變能密度之觀念來訂定其破壞準則。   最後利用所建立之有限元素模型,與輪圈實測撞擊分析之結果比對。本論文之研究成果可提供輪圈實測模擬分析之參考。

並列摘要


For the safety sake and for the regulation requirements, the structural strength of rims has to be examined via a series of tests. However, it is time consuming and expense costly in the development of a product to pass the tests. In order to save time and cost, the CAE (Computer-Aided Engineering) technology is usually adopted to design rims. This thesis aims to investigate the CAE technology for the strength analysis of aluminum rims. The CAE simulation models were developed to calculate the rim strength using the dynamic/explicit finite eminent code LS-DYNA and the static finite element code ABAQUS/Standard, for the dynamic and static analyses, respectively. The CAE models were constructed to simulate the 13 degree and 90 degree rim impact tests. The dynamic analysis was preformed first to evaluate the validity of the boundary conditions imposed in the CAE models. The load data and strains in the deformed rims were measured in the actual tests and the validity of the CAE models was confirmed. The boundary conditions were then converted to an equivalent load condition for the static analysis using various approaches. In addition, a failure criterion was also established form both the actual tests and the dynamic CAE simulations. An equivalent failure prediction mode was developed as well in the present study for the static stress analysis for the rim impact test. In the equivalent mode, the failure of the rim in the impact test can be predicted by using the elastic static analysis. The developed equivalent failure mode was validated by the actual impact tests and can be used in the rim design.

參考文獻


[17] 林東立,“鋁輪圈13度撞擊之有限元素分析”, 國立台灣大學機
[18] 張嘉哲,”汽車局部結構強度之有限元素分析”, 國立台灣大學
[20] 陳為仁,“鋁輪圈衝擊測試電腦輔助工程分析”,華岡工程學報,
[25] 羅元隆,“輪圈13度衝擊有限元素法分析及破壞準則之研究”,
and Quadrilateral with Orthogonal Hourglass Control”, International Journal for Numerical Methods in Engineering, Vol. 17, pp. 679-706 (1981)

被引用紀錄


鄭國夆(2014)。嬰兒推車之輪胎結構與路障碰撞應力分析〔碩士論文,國立虎尾科技大學〕。華藝線上圖書館。https://doi.org/10.6827/NFU.2014.00037

延伸閱讀