透過您的圖書館登入
IP:18.117.107.90
  • 學位論文

電漿輔助化學氣相沉積含奈米矽晶之富矽氮化矽金氧半發光二極體特性研究

Characteristics of Metal-Nitride-Semiconductor Light Emitting Diode Made on PECVD Grown Si-rich SiNx Film with Si Nanocrystals

指導教授 : 林恭如

摘要


在本論文中,我們研究含奈米矽晶的富矽氮化矽薄膜的光電特性及材料分析。我們使用電漿輔助化學氣相沉積通以矽甲烷與氮氣或氨氣成長富矽氮化矽薄膜,經退火後形成富含奈米矽晶的氮化矽層。我們得到氨氣是比氮氣更適合做為反應的氣體。我們藉由改變氨氣流量,成功地調變了不同矽氮比的富矽氮化矽薄膜。在拉塞福背向散射實驗中,我們證實增加氨氣的流量,則氮化矽薄膜的氮矽比逐漸提高,從富矽氮化矽直到接近純氮化矽。此現象也可由傅立葉紅外線光譜儀中,薄膜中的矽-氫鍵吸收峰值往長波數移動來證實。而藉由穿透式電子顯微鏡,可觀察隨著氨氣增加,奈米矽晶尺寸由大到小,而由量子局限效應光激螢光範圍可從675nm藍移至385nm。其中在氨氣流量為200sccm時光激螢光達到最強,此時的材料化學組態為SiN1.16。 此外,本論文也討論富矽氮化矽發光二極體的電激螢光特性。由電壓-電流曲線可量測極低的導通電壓3伏,其因為金屬與介電層的位障極低之緣故。然而光功率卻只有45奈米瓦。因此我們探討材料本身電荷的儲存效應。由電容-電壓量及保持時間測得,相較於富矽氧化矽元件,富矽氮化矽元件中電子電洞不易儲存於奈米矽晶中,此即造成電子電洞對在奈米矽晶裡的復合機率偏低之因素。

並列摘要


In this thesis, we study optoelectrical characteristics and material analysis of silicon-rich silicon nitride film (SRSN) with silicon nanocrystals (Si-ncs). The SRSN films are deposited by plasma enhanced chemical vapor deposition (PECVD) using SiH4 and N2 or NH3. Si-ncs embedded in Si3N4 would form after high temperature annealing. We conclude that NH3 is the better reactant gas instead of N2. The SRSN films with different composition are deposited by detuning NH3 fluence. From results by means of RBS, we gain the ratio of N/Si raise with NH3 increasing, and SRSN changes from Si-rich SiNx to pure Si3N4. This phenomenon is proved by means of FTIR, the absorption peak corresponds Si-H stretching mode shift toward long wavenumber. From images of HRTEM, we observe that the size of Si-ncs decrease with NH3 increasing. The photoluminescence (PL) ranges from 675 nm to 385 nm by quantum confinement effect (QCE). The strongest PL reveals from SiN1.16. In addition, we discuss the electroluminescence of SRSN LED. The low turn-on voltage is 3 V because of low barrier between metal and dielectric layer. However, the optical power just reaches 45 nW. As the result, we study the charge storage effect in SRSN LED. In capacitance-voltage and retention time measurement, we conclude electron and hole are hardly trapped in Si-ncs so that the efficiency of e-h recombination is low, compared to Si-rich silicon oxide (SRSO) LED.

參考文獻


Chapter 1
[5] K. S. Cho, N. M. Park, T. Y. Kim, K. H. Kim and G. Y. Sung “High efficiency visible electroluminescence from silicon nanocrystals embedded in silicon nitride using a transparent doping layer,” Appl. Phys. Lett., vol. 86, 071909, 2005.
[6] S. V. Deshpande,E. Gulari, S. W. Brown and S. C. Rand, “Optical properties of silicon nitride films deposited by hot filament chemical vapor deposition,” J. Appl. Phys., vol. 77, pp. 6534-6541, 1995.
[9] C. H. Cho, B. H. Kim, T. W. Kim, S. J. Park, N. M. Park, G. Y. Sung, “Effect of hydrogen passivation on charge storage in silicon quantum dots embedded in silicon nitride film,” Appl. Phys. Lett., vol. 86, 143107, 2005.
[10] A. Benami, G. Santana, A. Ortiz, A. Ponce, D. Romeu, J. Aguilar-Hernandez, G. Contreras-Puente and J. C. Alonso, “Strong white and blue photoluminescence from silicon nanocrystals in SiNx grown by remote PECVD using SiCl4/NH3,” Nanotechnology, vol. 18, 155704, 2007.

延伸閱讀