透過您的圖書館登入
IP:3.135.183.46
  • 學位論文

迴歸分析、類神經網路與遺傳演算神經網路於人體脂肪測定及推算之探討

Measuring body fat using regression analysis﹐artificial neural network and genetic algorithm neural network

指導教授 : 顏淑惠

摘要


體脂肪含量是人體健康指標之一,測量體脂肪可以幫助我們了解體脂肪和疾病的預防。屍體解剖法是量測身體脂肪最準確的方法,在活人身上執行量測似乎是不切實際的。此外,水中秤重法、同位素稀釋法、生物阻抗分析法等雖具有準確性,但大多是操作程序繁瑣或是價格昂貴。為此,美國陸軍、YMCA等組織各自發展量測模型。世界衛生組織建議以簡單容易操作量測的BMI來代替身體脂肪含量。但BMI最為人所詬病的是並未考慮人體脂肪在身體的分佈及特定部的堆積問題,因此準確度亦有待商確。本研究想透過複迴歸分析、類神經網路與遺傳神演算神經網路模型,藉由人體參數(年齡、體重、身高、頸圍、胸圍、腹圍、臀圍等)的輸入,來建構一個更精確的預測模型。本研究使用美國猶他州楊百翰大學人體效能研究中心(Human Performance Research Center, Brigham Young University, Provo) Dr. A. Garth Fisher所提供252筆男性的身體各量測指標的資料。實驗預測結果以遺傳演算神經網路模型(RMSE 4.0854) > 類神經網路5變數模型(RMSE 4.3330) > 類神經網路12變數模型(RMSE 4.3783) > 複迴歸12變數模型(RMSE 4.3981) > 複迴歸5變數模型(RMSE 4.4620) > YMCA體脂肪模型(RMSE 4.7757) > US Army體脂肪模型(RMSE 7.7336)。

並列摘要


Body fat mass is one of the health indicators. Measuring it is helpful to understand the relationship between body fat and diseases. Although, cadaver dissection provides the most accurate method to assess the value. But, it is not appropriate for the people who are living. Additionally, some accurate methods, such as underwater weighting, isotope dilution, bioelectrical impedance analysis , are complicated and costly incredibly. Therefore, Young Men's Christian Association (YMCA) and the United States army tried to develop instruments for gauging body fat. Furthermore, World Health Organization (WHO) suggested that using body mass index (BMI) instead of body fat. However, evaluating BMI is not considered distribution of human body fat tissue component and specific region. It is doubtful about the accuracy. The purpose of this study is constructing a more precise predict model by multiple regression analysis, artificial neural network, genetic algorithm neural network, the parameters are age, weight, height, neck circumference, chest circumference, abdomen circumference, hip circumference, and so on. 252 males’ body measurement indicators were database which were collected by Dr. A. Garth Fisher who was in Human Performance Research Center , Brigham Young University , Provo. The result is genetic algorithm neural network RMSE: Root Mean Square Error (RMSE 4.0854) > artificial neural network 5 variables model (RMSE 4.3330) > artificial neural network 12 variables model (RMSE 4.3783) > multiple regression analysis 12 variables model (RMSE 4.3981) > multiple regression analysis 5 variables model (RMSE 4.4620) > YMCA body fat model (RMSE 4.7757) > US Army body fat Model (RMSE 7.7336)。

參考文獻


[1] 曹德弘、謝伸裕、詹光裕,規律運動者的腹部脂肪分佈和體圍的關係, 中華民國體育學會體育學報38卷1期,民國八十四年。
[5] 黃美玲、陳幸宜、陳貴琳、李雅雯,類神經網路輔助醫療診斷分類模式之建構,中華民國品質學會第42 屆年會暨第12 屆全國品質管理研討會,民國九十五年。
[6] 張俊郎、陳啟浩、曾輝鈺,結合類神經網路與決策樹於糖尿病前期診斷之研究,中華民國品質學會第43屆年會暨第13屆全國品質管理研討會,民國九十六年。
[4] 俞勝正、柳銘哲、周美榮、顧雅貞、劉宏智,以類神經網路改進心電圖診斷技術,元培科技大學放射技術系加馬第三十九期,民國九十七年。
[16] Lukaski, H. C., Bolonchuk, W. W., Hall, C. W., Siders, W. A. Validation of tetrapolar bioelectrical impedance method to assess human body composition. Journal of Applied Physiology, 60,pp1327-1332,1986.

被引用紀錄


葉昱慶(2013)。以深度圖影像與骨架特徵點進行人體重量估測〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/CYCU.2013.00362

延伸閱讀