透過您的圖書館登入
IP:18.191.234.62
  • 學位論文

以微米構形薄膜製備互補式電致變色元件及其性質研究

On the Performances of Complementary Electrochromic Devices using Micropatterned Electrochromic Films

指導教授 : 林正嵐

摘要


本研究使用靜電場輔助恆電位電鍍法製備具微米構形(micropattern)之普魯士藍(prussian blue, PB)與聚(3,4-乙烯二氧噻吩) (Poly(3,4-ethylenedioxythiophene), PEDOT)電致變色薄膜,以其為電極組裝成四種互補式電致變色元件(electrochromic device, ECDs)。根據循環伏安法(cyclic voltammetry)、紫外光-可見光吸收光譜和雙階梯電位法(double-potential-step)之實驗結果,使用微米構形薄膜之ECDs,可以有效提高電致變色性能。其中以兩邊都為微米構形之薄膜,並使用固態電解質組裝成之ECDs,具有較好的電致變色性質與穩定性,在不損失光學對比度(T)的情況下,有更快的著色(0.42 s)與去色(6.69 s)時間,與一般ECDs相比,分別縮短了約29%與11%的應答時間,並且證明經過10,000次以上循環後,ECDs沒有嚴重的降解或不可逆的副反應。

並列摘要


In this study, micropatterned Prussian blue and (Poly(3,4-ethylenedioxythiophene) films were prepared by electrostatic field-assisted potentiostatic deposition, and complementary electrochromic devices were assembled using these thin films.. According to the experimental results of cyclic voltammetry, UV-Vis absorption spectroscopy and double-potential-step, ECDs using micropatterned films, which can effectively improve the electrochromic performance. The ECDs assembled with thin-film electrodes with micropattern on both sides and using solid electrolytes have good electrochromic properties and stability. Faster coloring (0.42 s)/bleaching (6.69 s) times without loss of optical contrast (T), and about 29%/11% shorter response times, respectively, compared to general ECDs. Repeated switching of the ECDs over 10,000 cycles, without great degradation or irreversible side reactions.

參考文獻


[1] “Handbook of Inorganic Electrochromic Materials,” Handbook of Inorganic Electrochromic Materials, 1995. https://books.google.com.tw/books?hl=zh-TW lr= id=MYd1Np3yO-8C oi=fnd pg=PP1 dq=2.%09Granqvist,+C.+G.+(Ed.).+(1995).+Handbook+of+inorganic+electrochromic+materials.+Elsevier. ots=kvr8_-yv2g sig=dUhu3loJq8v7uVDhRzOwk4nfc4M redir_esc=y#v=onepage q=2.%09Gran (accessed Jul. 25, 2022).
[2] L. S.Miller andJ. B.Mullin, “Electronic Materials from Silicon to Organics,” Electronic Materials, 1991. https://books.google.com.tw/books?hl=zh-TW lr= id=6TrUBwAAQBAJ oi=fnd pg=PA1 dq=L.+Miller+and+J.+B.+Mullin,+Electronic+materials:+from+silicon+to+organics.+SSBM,+(2012) ots=38zw5et3qP sig=DxyS08x-hqBpHScFK39l3wZq-b0 redir_esc=y#v=onepage q f=false (accessed Jul. 26, 2022).
[3] S. K.Deb, “A Novel Electrophotographic System,” Appl. Opt. Vol. 8, Issue S1, pp. 192-195, vol. 8, no. 101, pp. 192–195, Jan.1969, doi: 10.1364/AO.8.S1.000192.
[4] D. R.Rosseinsky andR. J.Mortimer, “Electrochromic systems and the prospects for devices,” Adv. Mater., vol. 13, no. 11, pp. 783–793, 2001, doi: 10.1002/1521-4095(200106)13:11<783::AID-ADMA783>3.0.CO;2-D.
[5] X.Cao, X.Dai, andJ.Liu, “Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade,” Energy Build., vol. 128, pp. 198–213, 2016, doi: 10.1016/j.enbuild.2016.06.089.

延伸閱讀