透過您的圖書館登入
IP:18.220.187.178
  • 學位論文

多關節型下肢輔助復健機器人研製

Research and Development of a Multi-joint Lower-limb Rehabilitation Robot

指導教授 : 葉賜旭

摘要


本論文主要目的為發展一套多關節型下肢輔助復健機器人,希望能夠提供下肢需要進行復健的患者一套更方便,更有效率,且低成本的復健工具。 本論文所提出的多關節型下肢輔助復健機器人為外甲式結構,可以充許使用者以穿戴的方式來使用,並且可以運用機器人學的方法,可由終端受動器的運動狀態推估出膝關節及髖關節的運動狀態。在電控系統的設計上,利用電流感知器,馬達驅動器,單晶片等電路元件為基礎,實現干擾觀測器,作為力量回授的感知器,可以有效的降低成本。在控制器的設計上,使用Addmittance控制架構來適當的控制使用者施力與馬達輸出轉速之間的關係。 本論文所提出的控制器架構可使輔助機器人在三種不同的模式下操作,分別是連續被動運動模式Continuous Passive Motion Mode(CPM)mode、連續主動運動模式Continuous Active Motion Mode(CAM) mode、複合運動模式Hybrid Motion Mode(HM) mode。連續被動運動模式建構在馬達轉速控制架構之下,操作方式為帶動復健者下肢以固定速度前後移動,達成等速運動的效果。連續主動運動模式的操作方式為使用者下肢施力帶動復健輔具,而復健輔具則提供固定的阻力,達成阻力運動的效果。複合運動模式是指將連續主動運動模式及連續被動運動模式混合為整合式運動功能。三種運動模式可分別實現不同的復健應用。 本研究實驗結果可驗證控制器的可行性。藉由調整控制器參數來讓輔助復健機器人符合不同使用者的復健需求。設計控制器參數a可降低系統參數 的變化對控制系統所造成的影響。設計參數 可使系統速度響應較快。調整參數 可改變Admittance也就是使用者施力與機器人系統輸出轉速來符合不同的使用者需求。 此系統具有輕量化,操作方便,易維修之特點,也能夠針對不同的身體狀態將系統操作在適當的復健模式,期以達到最佳的復健效果。

並列摘要


This study aims to develop a multi-joint lower limb rehabilitation robot in order to provide patients who need lower limb rehabilitation with a more convenient, effective and low-cost rehabilitation tool. This study proposes the exoskeleton structure of a multi-joint lower limb rehabilitation robot. Exoskeleton structure means the robot is wearable. Robotics method can be applied to estimate the kinematics of knee joint and hip joint by kinematics of end effector. On the design of the electrical control system, it realize a disturbance observer based on some of electrical elements such as current sensor, driver, and microcontroller. It can reduce the cost effectively by using a disturbance observer as the sensor of force feedback. On the design of the controller, Addmittance control structure can be used to control the correlation between user force and motor speed appropriately. The controller enables the rehabilitation robot to operate under three different operation modes: Continuous Passive Motion Mode(CPM), Continuous Active Motion Mode(CAM), and Hybrid Motion Mode(Hybrid). Continuous Passive Motion Mode(CPM)mode bases on the motor speed control structure. The operation of CPM is dragging the lower limb of the user backward and forward in stable speed to achieve the effect of isokinetic exercise. The operation of Continuous Active Motion Mode(CAM) mode is dragging the rehabilitation robot by the lower limb of the user and the rehabilitation robot provides constant resistance to achieve the effect of resistance exercise. Integration of CAM mode and CPM mode is HM mode. These modes can be applied to different applications of rehabilitation. The experiment results can prove the feasibility of the controller design. The rehabilitation robot can satisfy various requirements of the user by adjust parameters of the controller. The design of the controller parameter a is able to reduce the effect of the variation due to the change of . The design of the controller parameter is able to make the velocity response of the system faster. The design of the controller parameter is able to regulate the Admittance. In another word, regulation of is able to adjust the correlation between the user force and system speed to satisfy various requirements of the user. This system has three features: light, convenient to operate, and easy to maintain. In addition, it would operate under an appropriate mode depending on the different physical states of patients so as to achieve optimum effect of rehabilitation.

參考文獻


[7] R. Ekkelenkamp, R. J. Veneman, H. V. D. Kooij, “LOPES: Selective control of gait functions during the gait rehabilitation of CVA patients,” Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics, Vol. 2005, pp. 361-364, 2005.
[9] M. Bernhardt, M. Frey, G. Colombo, R. Riener, “Hybrid force-position control yields cooperative behaviour of the rehabilitation robot LOKOMAT,” Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics, Vol. 2005, pp.536-539, 2005.
[11] S. S. Yeh and J. T. Sun, “Design of the lower limb rehabilitation robot REHABROB-I,” Journal of Biomechanics, Vol.40, No.S2, pp.S308, 2007.
[12] Y. Sankai, “Leading Edge of Cybernics:Robot Suit HAL, ” Proceedings of the SICE-ICASE International Joint Conference, pp18-21, 2006.
[13] A. Zoss, H. Kazerooni, A. Chu, “On the Mechanical Design of the Berkeley Lower Extremity Exoskeleton(BLEEX), ”Proceedings of the IEEE Intelligent Robots and Systems, Vol.4, pp.3465-3472, Aug, 2005.

被引用紀錄


吳泓叡(2012)。下肢外骨骼之設計與實現〔碩士論文,元智大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0009-2801201415003326

延伸閱讀