本論文主要為利用雙層金奈米之結構引發表面電漿子之研究。利用模OptiFDTD軟體,設定金奈米粒子為40nm,粒子間距為10nm,排列為 之陣列,模擬單層結構以及雙層結構之電場強度分布。根據模擬結果發現整齊排列之雙層結構電場增強較單層結構約1.6倍;同時也針對金粒子任意排列之雙層結構作模擬,雙層之強度比單層增強約2.2倍。 實際以實驗製作雙層金奈米粒子結構,利用3-(2-胺基乙基胺)丙烷基三甲氧基矽烷(APTMS)對玻璃基板改質,以鍵結吸附金粒子,靜置5小時,並利用旋轉塗佈法將矽酸膠(Colloidal Silica)鍍在單層金粒子結構上,做為第二層金奈米粒子之基板,再以相同方法製作出雙層金奈米粒子結構。 利用鍍上螢光染料羅丹明6G(RH6G),檢測此雙層金粒子結構對電場增強之可行性,經螢光光譜儀分析取得光譜圖,比較幾種不同結構之螢光強度。由實驗結果發現雙層金奈米粒子結構比單層結構增強約1.7倍;比無金粒子結構則增強約4倍。本論文由模擬與實驗初步得知,雙層金奈米粒子結構所激發的表面電漿子共振強度較單層金粒子來得大。
In this paper, we use simulation software 'OptiFDTD' to simulate the electric field intensity of single-layer and double-layers gold nanoparticles structure. The double layers structure include two gold nanoparticles layers, gold particle has a diameter of 40nm, and the average space between two particles is about 10nm. We find double-layers structure has larger electric field intensity than single-layer for about 1.6 fold. For the situation of random distribution of gold nanoparticles, the result is about 2.2 fold. Besides, we also do the practical experiment for double-layers structure, and use fluorescence dye Rhodamine 6G to inspect the results of our structure. The fluorescence intensity of double-layers structure enhance 1.7 times more than single-layer. In this research, we can basically find double-layers gold nanoparticles structure enhance stronger surface plasmon resonance than single-layer structure.