透過您的圖書館登入
IP:3.149.230.44
  • 學位論文

逆向差速齒輪式動力整合分配機構設計與分析

Design and Analysis of Reverse Differential Gear type of Power Integration Distribution Mechanism.

指導教授 : 郭桂林
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


複合動力系統為結合兩種不同類型的動力源來驅動車輛,可分為串聯式與並聯式二大類,其中以並聯式有較佳之系統效率。並聯式的優點在於雙動力源可個別單獨運轉輸出動力來驅動車輛,當需要較大功率來驅動車輛時亦可雙動力同時輸入,產生較大之動力來驅動,而系統的整合關鍵在於動力整合分配機構的設計。 本論文是針對動力整合分配機構進行研究,以差速齒輪雙自由度之傘齒輪系作為研究之對象,搭配內燃機、馬達/發電機,進行各種可能配置討論,以求得一種最適合作為複合動力系統之動力整合傳動機構。同時利用功率流理論進行模擬,以得到逆向差速齒輪動力整合分配機構之理論效率。 建立本研究之實驗平台,實際設計製作動力整合分配機構,以及各類實驗設備的選擇與架設,進行不同動力模式之實驗,並以圖控程式語言LabVIEW作為人機介面的監控程式,將實驗平台上所擷取之各關鍵零組件的實驗數據,透過人機介面的整合即時的記錄及儲存,並對機構效率損失進行分析,提出改良之評估。

並列摘要


Hybrid electric power system combines two different power-driven sources which are series hybrid electric power system and parallel hybrid electric power system respectively. The key factor of the system integration is the design of power integration mechanism. The research is focus on the power integration mechanism. we used degree of freedom of differential bevel gear system as our research object, together with internal-combustion engine, motors and dynamo. we tested different combination, and looked for the optimum conjunction as the best design of hybrid power integration mechanism. Then we used the system function of the power integration mechanism, internal-combustion engine, motor and dynamo, to mathematically run the simulation. From the simulation we proved the theory of the efficiency of differential gear type of Power Integration Distribution Mechanism. We designed and manufactured the power integration mechanism, motive Motor/ generator, internal-combustion engine, brake and clutch, etc. and used different module to experiment. Using the LabView as the program language, catching signals that come from the key components, through the manual and automatic corporation to get instant recording and deposition, we analyzed efficiency loss and purposed the solution to improve the efficiency.

參考文獻


[2] Hermance, D., and Sasaki, S., “Hybrid Electric Vehicles Take tothe Streets”, IEEE Spectrum ., v 35, n 11, 1998 , pp 48 – 52.
[3] Emadi, A., Rajashekara, K., Williamson, S.S., Lukic, S.M. “Topological overview of hybrid electric and fuel cell vehicular power system architectures and configurations” IEEE Transactions on Vehicular Technology v 54 n 3, 2005, pp. 763-770.
[5] Yuan Mao Huang and Kuo-Juei Wang “A Hybrid Power Driving System with an Energy Storage Flywheel for Vehicles ,” SAE paper no. 2007-01-4114.
[6] Satoshi, A., Yusuke, H., Takahiro, Y., and Hiroyuki, A., “Energy Efficiency Improvement of Series Hybrid Vehicle,” JSAE Review 22, 2001 , pp. 259–264.
[7] Huang, K. D., and Tzeng, S. C., “A New Parallel-type Hybrid Electric-vehicle,” Applied Energy, v 79, 2004, pp. 51–64.

被引用紀錄


沈大鈞(2013)。逆向差速齒輪式複合電動機車之動力模式切換控制與性能分析〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2013.00355
顏子哲(2012)。逆向差速齒輪式複合電動機車之性能測試與研究〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2012.00430
鄭明源(2010)。逆向差速齒輪式複合電動機車之能量管理系統開發與實作〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2010.00263
黃超元(2010)。磷酸鋰鐵電池應用於逆向差速齒輪式複合動力電能管理系統〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2010.00261
邱振豪(2009)。逆向差速齒輪式複合電動機車之系統整合與實作〔碩士論文,國立臺北科技大學〕。華藝線上圖書館。https://doi.org/10.6841/NTUT.2009.00349

延伸閱讀