透過您的圖書館登入
IP:18.225.35.81
  • 學位論文

銅基-碳化鎢之複合電鍍研究

Electrodeposition of Cu-WC Composite on Cu

指導教授 : 陳貞光

摘要


本研究在純銅表面將碳化鎢惰性粒子藉由電化學方式,與銅離子還原共鍍形成銅基碳化鎢複合鍍層,並可於鍍層內獲得0~35 vol.%的碳化鎢含量,但其鍍層緻密性受鍍膜參數之影響甚鉅,因此頇對純銅鍍膜品質進行改質,提升其機械性質並避免純銅高熱導性質降低。結果顯示以15°C與30 min最佳製程參數,藉由離子型添加劑改質鍍液成分,獲得緻密化之銅基鍍層並控制其結構型態,當添加劑含鉀離子時,表面為(220)方向之單軸成長,形成錐狀結構;當添加劑含氯離子時,表面有(220)與(200)方向之雙軸成長,進而形成階梯式層狀結構。在複合電鍍製程中,以氯離子添加劑改質鍍液,並降低銅基碳化鎢複合電鍍中異質成核的影響,可以獲得緻密且連續覆蓋之複合鍍層,此鍍層之熱傳導可達到純銅塊材之90%的等效熱傳導,並相較於塊材式銅基碳化鎢複合材料,其等效熱傳導由260 W/mK提升至365 W/mK。此一軟質金屬銅基碳化鎢複合鍍層,隨緻密性與碳化鎢含量的提升,其硬度值可達倍數之成長,由60 Hv0.01提升至120 Hv0.01。最後,藉由機械合金法使金屬鎳披覆於碳化鎢表面,以金屬鎳介面層再次強化銅基鍍層與強化相粉末之接合性,可使複合鍍層機械性質再次提升,於25 vol.%碳化鎢含量時,其硬度提升至400 Hv0.05。

並列摘要


In this study, WC particles and copper were deposited on copper simultaneously by electrodeposition to form the (0~35 vol.%) WC-copper composite layer. Such coating is believed to improve both mechanical properties while maintaining the excellent thermal conductivity of pure copper. The optimal condition for pure copper electrodeposition was 15℃, 30 min. Different ionic additives are added to control surface morphology and microstructures of copper coatings. For K+ ion, the coating grew along <200> to form awl-like surface structure, and for Cl-, the coating grew along both <200> and <220> and formed ladder-like surface structure. When Cl- ion was used as additive, it reduced heterogeneous nucleation and form continuous composite layer. 90% of pure copper thermal conductivity can be achieved. The hardness of Cu-WC coatings increased with WC content. The highest hardness value achieved 120 Hv0.01 in comparison with 60 Hv0.01 of pure copper. WC particles were also mechanically alloyed with Ni powders before composite deposition to improve WC-Cu bonding. The Ni-WC containing copper composite coating demonstrated hardness level up to 400 Hv0.05.

參考文獻


[32] 李亞龍,電解備製二氧化鈦顆粒對Ni-TiO2複合鍍層性質之影響,碩士論文,國立台北科技大學材料科學與工程研究所,台北,2009。
[1] M. Nishira and O. Takano, “Friction and wear characteristics of electroless Ni-P-PTFE composite coatings”, Journal of the Surface Finishing Society of Japan, vol. 44, no. 2, 1993, pp. 140-144.
[2] N. Feldstein, “Composite coatings: plating plus particles”, Mat. Eng., vol. 94, no. 1, 1981, p. 38.
[4] A. Hovestad and L.J.J. Janssen, “Electrochemical codeposition of inert particles in a metallic matrix”, Journal of Applied Elecrtrochemistry, vol. 25, 1995, pp. 519-527.
[5] L. Benea, P.L. Bonora, A. Borello, S.Martelli, F. Wenqer, P. Ponthiaux, and J. Galland, “Preparation and investigation of nanostructured SiC–nickel layers by electrodeposition”, Solid State Ionics, vol. 151, 2002, pp. 89-95.

延伸閱讀