透過您的圖書館登入
IP:18.191.135.224
  • 學位論文

高光場侷限性環形濾波元件之研究

Study of High Optical-Confinement Microring Resonator

指導教授 : 王子建
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究在鈮酸鋰晶體上製作出世界上首例具有底切脊形結構之新型高光場侷限性光波導,利用底切脊形結構所具有橫向與縱向之高折射率對比,有效侷限傳播光場之分佈,以降低光波導的彎曲損失。論文中結合了離子佈植與濕式蝕刻技術以製作底切脊形結構,實驗上使用鉻膜以及光阻分別作為濕式蝕刻與離子佈植之遮罩,利用氦離子佈植在鈮酸鋰晶體中造成特定深度的晶格破壞,然後以稀釋後的氫氟酸蝕刻離子佈植區域,使其對脊形結構底部進行蝕刻,以形成底切脊形之結構。論文中利用底切脊形結構提高光波導的光場侷限性,以研製高光場侷限性之積體光學環形濾波元件,文中並討論實驗參數對於形成底切脊形結構的影響。

並列摘要


This study demonstrates a novel high optical-confinement waveguide with undercut ridge structure on lithium niobate for the first time in the world. High index contrast of the undercut ridge structure in the lateral and vertical directions can effectively confine the field profile of the guided mode and reduce the propagation loss of the curve waveguide bend. The process for fabricating undercut ridge structure combines the ion-implantation and wet-etching techniques. In the experiments, chromium and photoresist are used as wet etching mask and ion implantation mask. He+ ion implantation is utilized to create the lattice damage at the specified depth in lithium niobate. Diluted hydrofluoric acid is used to etch the damage region and thus removes the bottom side of the ridge structure for forming the undercut ridge structure. In the thesis, the proposed undercut ridge structure with high optical confinement is used to produce integrated-optic microring devices in lithium niobate and the effects of fabrication parameters on the formation of the undercut ridge structure are also discussed.

參考文獻


[1]S. E. Miller, “Integrated Optics: An Introduction,” Bell Syst. Tech. J., vol. 48, no. 7, pp. 2059-2068, 1969.
[2]T. J. Wang W. S. Lin, and F. K. Liu, “Integrated-optic biosensor by electro-optically modulated surface plasmon resonance,” Biosens. Bioelectron., vol. 22, pp. 1441-1446, 2007.
[3]J. Schmidtchen, “Low loss singlemode optical waveguide with large cross-section in silicon-on-insulator,” Electro. Lett., vol. 27, pp. 1486-1488, 1991.
[4]B. M. Azizur Rahman, V. Haxha, S. Haxha, and K. T. V. Grattan, “Design optimization on polymer electrooptic modulators,” J. Lightwave Tech, vol. 24, no. 9, pp. 3506-3513, 2006.
[5]R. V. Schmidt and I. P. Kaminow, “Metal diffused optical waveguide in LiNbO3,” Appl. Phys. Lett., vol. 25, no. 8, pp. 458-460, 1974.

延伸閱讀