透過您的圖書館登入
IP:18.116.8.110
  • 學位論文

天然氣重組器產氫之控制於燃料電池之應用

Hydrogen Generation Control of Natural-Gas Reformer for Applications of Fuel Cells

指導教授 : 陳金聖

摘要


本論文以燃料電池之天然氣重組器作為研究對象,以人機介面 (Human Machine Interface, HMI)、可程式邏輯控制器 (Programmable Logic Controller, PLC)及有焰無焰燃燒控制卡 (Control Card Flame Flox, CCFF)建構出一具有高可靠性的燃料電池及重組器控制系統。此外,本論文另一重點在於先將重組器與溫度需求建立起一套數學模式,並利用模糊PD控制做為空氣流量的控制設計,將此數學模式進行重組器系統溫度控制效果的模擬分析,透過實際天然氣重組器實驗比對模擬分析的結果,驗證所計算的空氣流量及其反應產生的氫氣可達到快速穩定的結果,並連接上質子交換膜燃料電池 (Proton Exchange Membrane Fuel Cell, PEMFC)與負載進行電力輸出測試,以驗證本研究發展出之控制系統的可靠度。 本論文研究發現,當天然氣壓力為50 mbar、流量為3.5 L/min時,配合流量80 L/min的空氣時,可讓重組器在最短時間內進行燃燒反應。此外,由本研究實驗亦可得知,在提供每分鐘0.02 L的去離子水的狀態下可獲得最大產氫壓力,且在此條件下產出之氫氣,其中CO濃度可在最短時間內降至10 ppm以下。在燃料電池方面,當46個單電池所組成之燃料電池堆在900 W的負載下所產生之電壓為33 V,推算出每個單電池所提供之電壓為0.7 V,為燃料電池所能提供之最佳效率。

並列摘要


This thesis constructs a highly feasible control system, which is applied in a natural-gas type reformer of fuel cells, by the cooperation of human machine interaction, programmable logic controller, control card flame flox, etc. The target temperature is achieved by adjusting the flow of air. Firstly, the mathematical model of temperature dynamic behavior of reformer is built up and the fuzzy PD control scheme is proposed. The simulation results verify the proposed fuzzy PD controller can rapidly get good controlled temperature of reformer. Then, the produced hydrogen will be guaranteed after the stable temperature and flow rate of reformer are well controlled. In the implementation, the reformer is connected to proton exchange membrane fuel cell and external load to test the performance of electrical power generation. When the pressure and flow rate of natural gas are fixed at 50 mbar and 3.5 L/min respectively, and flow rate of air is 80 L/min, the transient time of combustion reaction is shortest in the reformer. Furthermore, the maximum pressure of produced hydrogen is attained by feeding through 0.02 L/min de-ionized water into reformer, and the CO concentration in hydrogen is decreased to less than 10 ppm. The fuel cells, composed of 46 cells, can generate 33 V and 900 W based on the abovementioned hydrogen producing capacity. That implies each cell’s voltage is derived as 0.7 V.

參考文獻


[3]T.H. Yen, W.T. Hong, W.P. Huang, Y.C. Tsai, H.Y. Wang, C.N. Huang, C.H. Lee, “Experimental investigation of 1kW solid oxide fuel cell system with a natural gas reformer and an exhaust gas burner,” Journal of Power Sources, vol.195, 2010, pp. 1454–1462.
[4]C. Boccaletti, G. Fabbri, E. Santini, “A Reformer Model for Fuel Cell Power Systems, ”Powereng 2007 International Conference on Power Engineering, Energy and Electrical Drives, 12-14, Apr. 2007, Setubal, Portugal, pp. 347-352.
[5]J.C. Amphlett, R.M. Baumert, R.T. Mann, B.A. Peley, P.R. Roberge, A. Rodrigues, “Parametric modeling of the performance of a 5-kw proton exchange membrane fuel cell stack”, Journal of Power Sources, vol. 49, 1994, pp. 349-356.
[6]J.C. Amphlett, R.T. Mann, B.A. Peley, P.R. Roberge, A. Rodrigues,“A model predicting transient responses of proton exchange membrane fell cells”, Journal of Power Sources, vol.61, 1996, pp. 183-188.
[7]J.C. Amphlett, R.M. Baumert, R.T. Mann, B.A. Peley, P.R. Roberge,“Performance, modeling of the Ballard Mark IV solid polymer electrolyte fuel cell”, Journal of the electrochemical Society, vol.142, 1995, pp. 1-15.

延伸閱讀