透過您的圖書館登入
IP:3.147.89.85
  • 學位論文

鋁輪圈三大性能測試的電腦模擬分析及智慧型自動破壞修正系統之建立

Simulating the performance tests for aluminum wheels and establishing an automated failure modification system

指導教授 : 徐業良
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究利用有限元素分析軟體ANSYS針對鋁輪圈的彎曲疲勞、徑向疲勞、以及 衝擊破壞測試作電腦模擬分析,再利用MATLAB軟體發展出一套使用者輸入的介面,使得使用者可以輕易地操作且正確執行各項模擬分析,更進一步地發展出各項性能測試的破壞機率預測模式,來對於分析結果及歷史實測資料作一有效的利用,預測通過性能測試的機率。 接下來,利用元富鋁業工程師常用的破壞修正經驗規則,對於不同特徵的輪圈,在各項測試上作靈敏度的探討。除了將驗證這些破壞修正經驗規的正確性之外,更用其結果來歸納出自動破壞修正的規則,作為模糊邏輯自動破壞修正系統的基礎,進一步完成各項測試的智慧型模糊邏輯自動破壞修正系統。 最後將三大性能測試的自動破壞修正模式加以整合,發展出一套真正符合鋁合金輪圈業使用的「鋁輪圈性能測試自動破壞修正系統」,使得工程師只要輸入分析結果,就可以馬上得知修改的方向及幅度,縮短以往經驗規則修正的嘗試與錯誤,作為開發工作強力的後盾。

並列摘要


Disc wheels intended for normal use on passenger cars have to pass three types of tests before going into production: the dynamic cornering fatigue test, the dynamic radial fatigue test and the impact test. For wheel manufacturers, the most important thing is how to find the optimal design while the wheels are still able to pass the required structural performance tests. This thesis simulated these three tests by ANSYS and developed a friendly user interface by MATLAB in which users can operate easily and do the analysis correctly. Further, this thesis successfully combined the results of simulation and the historical test datas and developed a practical and reliable tool by using the failure probability to precisely predict whether the wheels can pass the tests. After that, this thesis classified all strategies commonly used to modify wheel design that failed in the tests. Sensitivity analysis for these strategies on different characteristic wheels are used to test the effect of these strategies. Finally, using the strategies that were found effective, this thesis established an automated failure modification system by fuzzy logic toolbox for each test and integrated all three tests. Using this system, the wheel design engineers can get the right modification directions and quantities to modify the wheels when the prediction is fail.

參考文獻


陳為仁,民國85年3月,”鋁輪圈衝擊測試電腦輔助工程分析”,華岡工程學報
黃政富,民國91年5月,”鋁輪圈13度衝擊試驗之FEM皆與實務驗證”,元智大學機械工程研究所碩士論文
Karandikar, H.M., and Fuchs, W., 1990. “Fatigue life prediction for wheels by simulation of the roating bending test,” SAE Transactions, v 99, p 180~190.
Bannantine, J.A., Comer, J.J., and Handrock, J.L., 1990. Fundamentals of Metal Fatigue Analysis, Prentice-Hall, Inc.
Hsu, Y. L, Hsu, M. S., 2000. “Weight reduction of aluminum disc wheels under fatigue constraints using a sequential neural network approximation method”

被引用紀錄


施宗宏(2008)。鋁輪圈撞擊測試之有限元素分析〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2008.02835
林東立(2007)。鋁輪圈13度撞擊之有限元素分析〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2007.03073
楊政綱(2005)。太陽能車鋁合金輪圈設計分析〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2005.10454
羅元隆(2004)。輪圈13度衝擊有限元素法分析及破壞準則之研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU.2004.01419

延伸閱讀