透過您的圖書館登入
IP:18.222.115.179
  • 學位論文

動態派翠小腦模型控制器應用於磁浮系統

Dynamic Petri Cerebellar Model Articulation Controller for Magnetic Levitation System

指導教授 : 林志民
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文針對磁浮系統之定位控制提出以小腦模型為基底的智慧型控制器。由於磁浮系統是屬於高度非線性系統,對於一般控制器來說,無法進行有效的精密控制,成為工業界的一大課題;另一方面,磁浮系統最大的特點在於無摩擦力,因此被廣泛用在磁浮列車、磁浮軸承、風洞實驗以及運輸系統,也因為磁浮系統無接觸力,精密控制也成為一大特點。本論文所提出的智慧型控制系統為動態派翠小腦模型控制器,而動態派翠小腦模型控制器用來近似為理想控制器,當中動態派翠用來判斷高斯層輸出的值是否通過,有通過者才能激發後面的立方體,反之則不激發,這樣一來能夠減少運算上的時間,減少運算上的負擔。最後,將所提出來的智慧型控制系統應用於磁浮系統,一方面經由模擬軟體展示其追蹤控制效能,另一方面,亦將所提出之動態派翠小腦模型控制器以元件可程式化邏輯閘陣列晶片硬體實現,以達到磁浮系統精密控制的目地。綜合以上所述,經由軟體模擬以及硬體實現結果可以看出,本論文所提出之智慧型控制系統可以達到使系統穩定並且擁有良好控制效能的目標。

並列摘要


In this thesis, the control of the magnetic levitation system is achieved by the proposed intelligent controller, which is based on the cerebellar model articulation controller (CMAC). The magnetic levitation system is a complicated and tough problem for the conventional controller, because the system is a highly nonlinear system. Since the magnetic levitation system is without mechanical contact, friction and noise, it can be used for precise positioning. These advantages make it a wide range of applications on the maglev train, magnetic bearing, wind tunnel, and conveyor system, etc. The proposed intelligent controller is composed of a novel dynamic Petri CMAC controller which is utilized to approximate an ideal controller. The dynamic Petri is used to determine the passing of the Gaussian function value. Finally, the proposed intelligent control system is applied to the magnetic levitation system, and its performance is verified through simulation and experiments based on the field programmable gate array (FPGA) chip. From the simulation and experimental results for the magnetic levitation system, the system stability and desired control performance can be achieved by the proposed intelligent controller.

並列關鍵字

CMAC magnetic levitation system dynamic Petri FPGA

參考文獻


[1] H. K. Chiang, C. A. Chen and M. Y. Li, “Integral variable-structure grey control for magnetic levitation system,” IEE Proc. Electr. Power Appl., vol. 153, no. 6, pp. 809-814, 2006.
[2] Z. J. Yang, Y. Fukushima, S. Kanae, and K. Wada, “Robust non-linear output-feedback control of a magnetic levitation system by K-filter approach,” IET Proc. Control Theory & Application
[3] F. J. Lin, S. Y. Chen, and K. K. Shyu, “Robust dynamic sliding-mode control using adaptive RENN for magnetic levitation system,” IEEE Trans. Neural Networks, vol. 20, no. 6, pp. 938-951, 2010.
[4] C. W. Chen, Intelligent Controller with PSO Algorithm for Magnetic Levitation
[6] M. B. Naumovic, “Modeling of a didactic magnetic levitation system for control education,” IEEE Conf. Telecommunications in Modern Satellite, Cable and Broadcasting Services, vol. 2, pp. 783-786, 2003.

延伸閱讀