透過您的圖書館登入
IP:3.129.211.6
  • 學位論文

利用水熱法製備摻雜鋰之氧化鋅奈米線及其性質研究

Preparation and Characterization of Li-doped ZnO Nanofibers by Hydrothermal method

指導教授 : 洪逸明

摘要


本研究利用水熱法(hydrothermal method)成長摻雜鋰之氧化鋅(Li-ZnO)奈米線陣列於透明導電基板上,透過二階段沉積之方式製備Li-ZnO樹枝狀結構,並於樹枝狀奈米線上旋鍍Li-ZnO球型結構,將合成好之Li-ZnO複合結構做為光陽極組裝成染料敏化太陽能電池(Dye-Sensitized Solar Cell,DSSC),並量測其轉換效率。探討水熱之反應條件對晶體結構及光電性質的影響。水熱過程中,透過聚乙基亞胺的添加能有效抑制奈米線的成長,合成出平均直徑約27 nm之Li-ZnO奈米線,藉由成長時間的控制,於水熱時間4小時下所成長的奈米線,有最大之長寬比數值125。此方法製備之Li-ZnO奈米線為結晶性良好之六方纖鋅礦結構,並沿著[002]方向成長。二階段成長之樹枝狀結構,其平均直徑約27 nm,整體樹枝長度約為22 μm,其成長方向多以[101]方向成長。將此一結果組裝成DSSC,結果得知,鋰的導入能有效提升電池的轉換效率,其轉換效率為1.04 %,利用二次沉積之方式提高整體比表面積,提升染料吸附量,其轉換效率為2.74 %。進一步於樹枝狀結構表層塗佈Li-ZnO球型顆粒,此顆粒能完全填補奈米線縫隙,當入射光進入球型結構時容易產生光散射,延長光行徑距離,減少電子的再次重組,同時提高氧化鋅與染料之間的表面穩定性,使電池的效率倍增,其轉換效率達到3.00 %。此方法製備之Li-ZnO DSSC有最佳的光電轉換效率。

並列摘要


In this paper, the Li-ZnO nanofibers and nanoforsets had been synthesized on transparent conducting oxide substrates using a two-step hydrothermal method. The Li-ZnO nanoparticle was synthesized by sol-gel method and spin-coated on the surface of Li-ZnO nanoforests substrate. It was found the average diameter of Li-ZnO nanofibers is about 27nm due to the addition of PEI, which can hinder the lateral growth and only growth along [002] axial. The aspect ratios of the Li-ZnO nanofibers is depend on the growing time, the highest aspect ratio can be obtained with a growing time of 4 hours. Structure analyses of the Li-ZnO nanofibers reveal that the nanofibers is single crystalline wurtzite structure and grow along the [002] direction. The morphology of Li-ZnO nanoforests was uniform by two-step hydrothermal method. The length of the branched Li-ZnO nanoforests is 22 μm upon a single growth step and their diameter is about 27nm. Structure analyses of the Li-ZnO nanofibers revealed that the nanoforests possess polycrystalline wurtzite structure and grow along the [101] direction. These results showed that the conversion efficiency (η) of the Li-ZnO nanofibers DSSC is 1.04 %. Moreover, the electrons transport properties of the Li-ZnO nonaforests based DSSC were compared to that of Li-ZnO nanofibers cell. The conversion efficiency of the Li-ZnO nanoforests DSSC is 2.74 %. Li-ZnO nanoparticles are further bottom-up grown within the interstices of the Li-ZnO nanoforests using a spin-coated method to form the Li-ZnO composite structure. The conversion efficiency of the Li-ZnO composite DSSC is 3.00 %. The slightly higher light-harvesting efficiency in Li-ZnO composite anode is ascribed to its longer electron transport pathway compared to the Li-ZnO nanofibers anode.

並列關鍵字

ZnO hydrothermal dopping DSSC

參考文獻


1. S. Iijima, 'Helical microtubules of graphitic carbon,' Nature, vol. 354, pp. 56-58, 1991.
3. K. Keis, J. Lindgren, S.-E. Lindquist and A. Hagfeldt, 'Studies of the adsorption process of Ru complexes in nanoporous ZnO electrodes,' Langmuir, vol. 16, pp. 4688-4694, 2000.
4. H. Horiuchi, R. Katoh, K. Hara, M. Yanagida, S. Murata, H. Arakawa and M. Tachiya, 'Electron injection efficiency from excited N3 into nanocrystalline ZnO films: Effect of (N3-Zn2+) aggregate formation,' Journal of Physical Chemistry B, vol. 107, pp. 2570-2574, 2003.
5. L. Ke, S. B. Dolmanan, L. Shen, P. K. Pallathadk, Z. Zhang, D. M. Ying Lai and H. Liu, 'Degradation mechanism of ZnO-based dye-sensitized solar cells,' Solar Energy Materials and Solar Cells, vol. 94, pp. 323-326, 2010.
6. T. P. Chou, Q. Zhang, G. E. Fryxell and G. Cao, 'Hierarchically structured ZnO film for dye-sensitized solar cells with enhanced energy conversion efficiency,' Advanced Materials, vol. 19, pp. 2588-2592, 2007.

延伸閱讀