透過您的圖書館登入
IP:52.14.85.76
  • 學位論文

量測手在三種不同前饋模式下執行移動的表現差異

An application of ballistic movement models to compare the hand-control capability while relying on three different feed-forward to get information

指導教授 : 林瑞豐
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


隨著科技發展,為了替代人類進入危險或是無法輕易進入的工作場所進行精密工作,遠端遙控操作此項科技因應而生,而人類又多了間接視覺回饋此資訊回饋方式,而此回饋方式是將直接視覺回饋和本體感覺兩種回饋方式獲得的資訊結合應用。 研究先驗證彈道式移動是否能針對在本體感覺情形執行的手部移動進行評估,另外還著重探討在直接視覺回饋、間接視覺回饋與本體感覺此三種資訊前饋方式情形下進行手部控制移動時對速度與準確度造成何種程度的差異。 實驗可分為前測實驗和正式實驗兩個部分,前測實驗其目的為確認實驗設計的可行性,正式實驗其自變項為受測者、三種不同資訊前饋方式、兩個不同的移動起始點和六種移動距離,依變項則是在三種不同前饋方式下執行彈道式運動的移動時間和移動後的和移動方向垂直的誤差(aiming error)和移動方向水平的誤差(stopping error)。 前測實驗由於手部移動方向會遮擋注視目標視線、設備不靈敏以及設備誤差較大等因素,導致彈道式模型雖然可以敘述移動時間的資料,卻無法敘述移動變異的資料;正式實驗則依前測實驗量測結果對正式實驗對移動方向進行修正,並在更改設備後,重新進行實驗。實驗結果顯示:(1)移動時間回隨著距離的增長而增加,直接視覺回饋情況下執行手部移動所耗費的移動時間最少,間接視覺回饋情況下次之而本體感覺情況下耗費最多(2)彈道式移動變異在敘述整體的aiming error和stopping error資料最少也有86.4%的變異,但彈道式移動變異則對近二分之一的受測者個別受測者的aiming error和stopping error資料無法良好敘述其變異。 實驗成功驗證彈道式移動模型適用於評估直接視覺回饋、間接視覺回饋與本體感覺此三種資訊前饋方式情形下進行的手部控制移動,由實驗中發現直接視覺回饋的aiming error和stopping error明顯優於間接視覺回饋和本體感覺,另外間接視覺回饋下執行移動距離較短時的手部移動其aiming error和stopping error較本體感覺表現好,反之則移動距離較長時則是本體感覺下的手部移動表現較佳,原因可能是間接視覺回饋其獲取資訊是直接視覺回饋和本體感覺兩種回饋方式獲得的資訊結合應用,而資料結合時產生衝突造成移動誤差,抑或是間接視覺回饋下的手部移動其不同的移動距離其主導的回饋方式有所不同所導致,因此未來將可研究不同的移動距離下各個回饋方式在執行手部移動時其貢獻程度為何,並可驗證是否適用於作為遠端遙控設備的評估方法。

並列摘要


Follow the evolution of science and technology recently, people hope the invention of remote operation that control and operate a system or equipment from a remote location or deathtrap environment. People use the technology relied on indirect visual feedback to get information. Indirect visual feedback information combined the direct visual feedback information and proprioception information. The study first verified the applications while relying on proprioception to get information ballistic movement time model and the ballistic movement variability model. Second the study discussed the difference of hand movement between accuracy and speed while relying on three different feed-forward to get information. The research was consisted of two experiments, in which the first experiment was a pilot study and the second experiment was a formal experiment. The independent variables studied in these experiments included participants, feed-forward information, movement distance and start point. Furthermore the dependent variables were movement time and movement variability. In pilot study, the instrument has lower-sensitivity and higher-errors. When movement direction is horizontal, participants could not stare at the target point due to their hands while the target point is near the start point. In formal experiment, the movement direction was corrected vertical and instrument was replaced. The results show that (1) the movement time increased with the increased distance, the hand-movement spent the least time while relying on direct visual feedback to get information, it spent median time while relying on indirect visual feedback and it spent the most time while relying on proprioception. (2) Both the models predicted well the measured data variances. According to overall participants’ data, the ballistic movement variability model predicted 86.4% data variance. However, individual participants’ data could not well predicted by the ballistic movement variability model. Half out of 12 participants’ movement endpoint variability (both the aiming error and stopping error) could not be well predicted by the ballistic movement variability model. The study verified the applications of the ballistic movement time model and the ballistic movement variability model while relying on direct-vision feedback, indirect-vision feedback and proprioception to get information.When participants perform hand-control movement, direct visual feedback information and proprioception information mismatch were introduced higher-errors. The contribution of irect-vision feedback and proprioception were difference while movement distance were difference.In the future, we can verify the application of ballistic movement models to compare the hand-control capability while using remote operation and probe into the effect of target modality on direct-vision feedback, indirect-vision feedback and proprioception contributions to the control of movement distance.

參考文獻


Adamovich SV, Berkinblit MB, Fookson O, & H, P. (1998). Pointing in 3D space to remembered targets. I. Kinesthetic versus visual target presentation. J Neurophysiol, 79, 2833–2846.
Akamatsu, M., MacKenzie, S., & Hasbrouc, T. (1995). A Comparison of Tactile, Auditory, and Visual Feedback in a Pointing Task Using a Mouse-Type Device. Ergonomics, 38(816-827).
Bagesteiro, L. B., Sarlegna, F. R., & Sainburg, R. L. (2006). Differential influence of vision and proprioception on control of movement distance. [Research Support, N.I.H., Extramural]. Exp Brain Res, 171(3), 358-370. doi: 10.1007/s00221-005-0272-y
Beggs, W. D. A., Sakstein, R., & Howarth, C. I. (1974). The generality of a theory of the intermittent control of accurate movements. Ergonomics, 17(6), 757-768.
C.I.Howarth, & W.D.A.Beggs. (1971). The relationship between speed and accuracy of movement aimed at a target. Acta Psychologica, 35, 207-218.

被引用紀錄


薛沂禾(2013)。使用不同手勢點擊觸控式手持行動裝置之表現〔碩士論文,元智大學〕。華藝線上圖書館。https://doi.org/10.6838/YZU.2013.00371

延伸閱讀