透過您的圖書館登入
IP:3.142.197.212
  • 學位論文

一系列benzothiazole配位基與鋁金屬之錯合物合成及其對ε-環己內酯及乳酸內酯之催化應用

Synthesis of Aluminum Complexes with benzothiazole and Their Application in Ring Opening Polymerization of ε-Caprolactone , L-Lactide and rac-Lactide

指導教授 : 陳喧應

摘要


合成一系列不同取代基的苯噻唑與鋁金屬的錯合物,並對其催化反應進行一系列的研究。。催化反應的結果中我們發現苯噻唑中的官能基會影響催化反應。 從晶體中我們發現鋁金屬是與苯噻唑中的氮原子進行配位形成錯合物。結果顯示具有拉電子能力之配位基會提昇對環己內酯和乳酸內酯催化的活性。而大多數經苯噻唑催化劑的開環聚合反應都十分快速且形成的聚合物的PDI值都小於1.3。 此外LThPh-NO2AlMe3錯合物對rac-lactide進行開環聚合其Pm值0.47-0.60左右。苯噻唑系列的催化劑在共聚物的催化反應中有著不同單獨催化的現象。在分開進行CL和LA聚合反應時,催化劑CL的催化活性比LA高但當在高溫開始進行共聚反應時,催化劑首先與乳酸內酯進行開環聚合反應而不是環己內酯。推測原因為鋁催化劑與LA的配位鍵結比CL強,造成催化反應進行時先選擇LA聚合。

關鍵字

鋁金屬 環己內酯 乳酸內酯 催化

並列摘要


A series of different benzothiazoles ligands coordinating with a series of different substituents aluminum were synthesized and their application for the ring-opening polymerization of ε-caprolactone and L-lactide was studied. The reaction of aluminum complexes was synthesized with 1.0 molar eqivalents of benzothiazoles ligand and 1.1 molar equivalent of aluminum at 0℃. The resulting catalysis was affected through different function group of the ligands. Through the crystal analysis, complex show that benzothiazoles ligands “Nitrogen” coordinating with aluminum. The result show that function group electronegative would affect the initiation rate of benzyl alkoxide to ε-caprolactone and L-lactide. Most of benzothiazoles catalyst’s ROP is fast and polymer’s PDI is lower than 1.5. In addition, the selectivity by LThPh-NO2AlMe3 showed the isotactic PLA with Pm during 0.47-0.60. And, this benzothiazoles catalyst show a different phenomenon in copolymerization reaction. When we start copolymerization reactionin high temperature, the catalyst first react with L-lactide not ε-caprolactone.

參考文獻


[1] a) A. Bhaw-Luximon, D. Jhurry, N. Spassky, Polym. Bull. 2000, 44, 31–38; b) P. Hormnirun, E. L. Marshall, V. C. Gibson, A. J. P. White, D. J. Williams, J. Am. Chem. Soc. 2004, 126, 2688-2689; c) D. J. Darensbourg, P. Ganguly, D. Billodeaux, Macromolecules 2005, 38, 5406-5410; d) N. Nomura, T. Aoyama, R. Ishii, T. Kondo, Macromolecules 2005, 38, 5363-5366; e) X. Pang, H. Du, X. Chen, X. Wang, X. Jing, Chem. Eur. J. 2008, 14, 3126-3136; f) N. Iwasa, J. Liu, K. Nomura, Catal. Commun. 2008, 9, 1148-1152; g) J. Liu, N. Iwasa, K. Nomura, Dalton Trans. 2008, 3978-3988; h) N. Iwasa, M. Fujiki, K. Nomura, J. Mol. Catal. A: Chem. 2008, 292, 67-75; i) S. Gong, H. Ma, Dalton Trans. 2008, 3345-3357; j) N. Iwasa, S. Katao, J. Liu, M. Fujiki, Y. Furukawa, K. Nomura, Organometallics 2009, 28, 2179-2187; k) D. Pappalardo, L. Annunziata, C. Pellecchia, Macromolecules 2009, 42, 6056-6062; l) F. Qian, K. Liu, H. Ma, Dalton Trans. 2010, 39, 8071-8083; m) D. J. Darensbourg, O. Karroonnirun, S. J. Wilson, Inorg. Chem. 2011, 50, 6775-6787; n) W.-A. Ma, Z.-X. Wang, Dalton Trans. 2011, 40, 1778-1786; o) W.-H. Sun, M. Shen, W. Zhang, W. Huang, S. Liu, C. Redshaw, Dalton Trans. 2011, 40, 2645-2653; p) C.-Y. Li, D.-C. Liu, B. T. Ko, Dalton Trans. 2013, 42, 11488-11496.; q) C. Bakewell, R. H. Platel, S. K. Cary, S. M. Hubbard, J. M. Roaf, A. C. Levine, A. J. P. White, N. J. Long, M. Haaf, C. K. Williams, Organometallics 2012, 31, 4729-4736; r) M. Lamberti, I. D’Auria, M. Mazzeo, S. Milione, V. Bertolasi, D. Pappalardo, Organometallics 2012, 31, 5551-5560 .
[2] W.-A. Ma, L. Wang, Z.-X. Wang, Dalton Trans. 2011, 40, 4669-4677
[3] Wenjuan Zhanga,; Youhong Wanga,; Lin Wanga,; Carl Redshawc,;Wen- Hua Sun. Organometallic., 2014, 750 ,65- 73
[4] Lei Li,; Bo Liu,; Dongtao Liu,; Chunji Wu,; Shihui Li,; Bo Liu,; Dongmei Cui,; Organometallics 2014, 33, 6474−6480
[5] Wenjuan Zhang,;Youhong Wang,; Ji Cao,; Lin Wang,; Yi Pan,; CarlRedshaw,; Wen-Hua Sun. Organometallics 2011, 30, 6253−626

延伸閱讀