透過您的圖書館登入
IP:3.141.8.247
  • 學位論文

微型寬波段近紅外光源設計與製作

Design and Fabrication of Micro Broadband Near-Infrared Light Source

指導教授 : 吳孟奇 何充隆
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文利用半導體製程技術,在矽基板上採用金屬鎢作為微燈絲的發光源,提供一穩定的電壓源給予燈絲,當有足夠的熱源累積於燈絲上時,便會有紅外光的光源產生。且在燈絲上設計不同週期之光子晶體模型,藉由此結構將發光波段侷限在紅外光的範圍,最後使用矽等向性蝕刻來進行後續矽基板掏空製程,以達成研究之成果。我們採用兩種不同製程方式進行元件之製作與改善。在舊製程中有三點問題,第一點問題是氧化鋅無法在高溫下進行熱退火製程,使得鎢薄膜無法得到低阻值,使得電流不易通過燈絲區域,在後續之元件量測中,熱無法累積在鎢絲上,燈絲不易發光。第二點問題是後續掏空製程問題,元件易受液體之表面張力影響,會有塌陷之問題,促使良率過低。第三點問題是鎢薄膜必須依靠外接基板和打線來支撐,以至於元件面積過大無法封裝在TO座上。而在新製程中,能將此三點問題有效的解決。 最後完成微型寬波段近紅外光源,光譜集中在近紅外區域以及微燈絲在較低的輸出功率下操作,在900-2500 nm的光轉換效率在35%以上且高於市售燈泡,最後也證明光子晶體可以抑制可見光區域的光譜並集中在近紅外光範圍,且面積只有1840μm × 1840μm.

關鍵字

光子晶體 微機電 光譜 近紅外光

並列摘要


In this paper, the use of semiconductor process technology in the silicon substrate with tungsten filament as a micro light source provides a stable voltage source to be given filaments, when there is sufficient heat accumulating in the filament, infrared light generates. With the design of photonic crystal models with different cycles on the filament, the light at the visible region can be restrained. Finally, we use silicon isotropic etching for suspension process in order to achieve the results of our research. There are three problems in the old process. The first is the zinc oxide cannot go through the thermal annealing process at a high temperature, so the tungsten film cannot obtain a low resistance, which causes that the heat cannot accumulate on the tungsten. Therefore, the filament is not easy to emit. The second is the problem of the suspension process. The component is susceptible to the surface tension of liquids, which might cause the component to collapse, thus the yield gets lower in the old process. The third is the component area is too large to be packaged. In the new process, the above problems can all be solved efficiently. Finally, it's proved that the photonic crystal can restrain the spectrum of the visible light region with only 1840μm × 1840μm in area.

並列關鍵字

Photonic crystals MEMS Spectrum Near-Infrared Light

參考文獻


[3] S. Y. Lin, J. G. Fleming, and I. E. Kady, “Three-dimensional photonic-crystal emission through thermal excitation,” Opt. Lett., 28, 1909, 2003.
[4] S. Y. Lin, J. Moreno, and J. G. Fleming, “3D photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett., 83, 380, 2003.
[5] Eli Yablanovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett., 20, 2059, 1987.
[13] K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structure, ” Phys. Rev. Lett. 65, 3152 (1990).
[14] E. Yablonovitch, T. J. Gmitter, K. M. Leung, “Photonic band structure: The face-centered-cubic case employing nonspherical atoms,” Phys. Rev. Lett. 67, 2295 (1991).

延伸閱讀