透過您的圖書館登入
IP:18.220.178.207
  • 學位論文

磷化銦系列近紅外寬波段發光二極體之研製

The Fabrication of InP-Based Near-Infrared Broadband LED

指導教授 : 吳孟奇 何充隆
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文旨在設計及製作以磷化銦為基板的近紅外寬波段發光二極體(LED)。磊晶片設計方面,我們利用InP/GaxIn1-xAsyP1-y異質接面使得LED得以一次輸出11.7 μm的光譜,且內含砷化鋁銦(InAlAs)電子阻擋層以提升載子復合效率,其中GaxIn1-xAsyP1-y以及InAlAs與InP基板皆為晶格匹配。製程中,我們利用快速熱擴散技術形成p-型區,該技術使用旋塗摻雜源,其可以避免使用檯面型結構所造成的漏電流過高問題,同時我們也使用電子槍蒸鍍透明導電膜,以達到電流分散的效果,進而提升LED的出光面積。本論文中,我們將深入探討擴快速熱擴散製程條件對於近紅外寬波段LED的電特性以及其光譜的影響。 最後,我們成功的製作出一個低漏電流(0.46595 nA)及低串聯電組(6.58 Ω)之近紅外寬波段發光二極體,其最佳的半高寬為 563 nm,此時,總發光功率在100 mA的注入電流下為5.8 mW;此外,最好的總發光功率為100 mA的注入電流下可達6.18 mW,此時其半高寬為420 nm,外部量子效率及插座效率分別為7.14%以及3.09%。

並列摘要


In this research, we demonstrated a novel planar-type InP-based near-infrared (NIR) broadband light-emitting diodes (LED) by using the rapid thermal diffusion (RTD) technique. The active layer consists of multiple double hetrostructures (DH) of InP/GaxIn1-xAsyP1-y layers and target to emit a broadband spectrum of 1-1.7 μm at once. In addition, we employed In0.52¬Al0.48As as electron blocking layer to improve the extraction efficiency. Moreover, when y=2.2x, GaxIn1-xAsyP1-y and In0.52¬Al0.48As are both lattice-matched to InP substrate. The p-type region were formed by RTD process with the zinc-phosphorous-dopant-coating (ZPDC) as the spin-on dopant (SOD) source to avoid high leakage from mesa-type structure. A gallium-doped zinc oxide (GZO) thin-film was adopted as transparent conductive layer to increase the light emitting region of LEDs. Ultimately, we have successfully fabricated a small series resistance Rs of 6.5-8 Ω, and ultra-small leakage current of 0.465-95 nA under 5 V reverse bias. Moreover, the full-width of half-maximum (FWHM) is up to 563 nm and has an extraordinary total light output power of 5.8 mW.

並列關鍵字

InP NIR Broadband LED

參考文獻


[1] B. M. Nicolaï, K. Beullens, E. Bobelyn, A. Peirs, W. Saeys, K. I. Theron, and Jeroen Lammertyna, “Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review,” Postharvest Biology and Technology 46(2), 99–118 (2007)
[4] G. C. Marten, J. S. Shenk, D. R. Buxton, J. L. Halgerson, and J. S. Hornstein, “Near Infrared reflectance spectroscopy (NIRS): analysis of forage quality in Four Legume Species”, United States Department of Agriculture - Agricultural Research Service, Agriculture Handbook, No. 643, Issued August 1985
[7] E. Ciurczak and J. Drennen, “Near-Infrared Spectroscopy in Pharmaceutical and Medical Applications, Marcel-Dekker,” Inc. New York, 2002.
[8] M. R. Krames, H. Amano, J. J. Brown, and P.L. Heremans, “Introduction to the issue on high-efficiency light-emitting diodes,” IEEE Journal on Selected Topics in Quantum Electronics 8(2), 185188 (2002)
[9] L. D. Zhu, K. T. Chan, J. M. Ballantyne, “MOCVD growth and characterization of high quality InP,” Journal of Crystal Growth 73(1), 83–95 (1985)

延伸閱讀