透過您的圖書館登入
IP:18.117.114.211
  • 學位論文

應用差分干涉對比術於透明材質的三維形貌量測方法

3-D topography measurement for transparent object by DIC

指導教授 : 林士傑

摘要


由於光電顯示產業如液晶顯示器、軟性顯示器的快速發展,越來越多種透明材質的基板及表面薄膜結構逐漸被開發使用。而在商品化的過程中,必須面對品質檢測的需求;因此如何量測透明物件的形貌尺寸,愈發重要。 本研究探討應用差分干涉對比(Differential Interference Contrast, DIC)顯微技術於三維形貌量測的可行性。差分干涉對比(DIC)顯微技術原為一影像強化技術;慣用於強化透明物件與背景之差異。但檢視其原理,應可用於透明物件的三維形貌的量測上。原本用於影像強化時,利用積分將差分相位還原時,計算精確度的要求並不高。但用於三維形貌量測時,如何降低雜訊對積分的影響便變得非常重要。在本研究針對定量化的還原相位演算法,提出修正型傅立葉相位積分(Modified Fourier Phase Integration, MFPI)重建演算法可以有效的降低雜訊的影響。 另外架設硬體量測實驗,驗證所提出的重建法應用於實際量測中。並研究不同光路型式的差分干涉對比術(DIC):反射式與穿透式量測的情形與差異,建構出能夠量測透明材質待測物表面三維形貌的量測平台。

並列摘要


Through the development of Opto-electronic industry such as liquid crystal display, flexible display expand very fast, lots of substrate and thin film are made by transparent material. In the process to become consumer products, there is an essential issue of inspection for the quality control, so how to measure the topography and geometric size of transparent object become more and more important. In this paper, we discuss and verify the three-dimensional topography measurement by Differential Interference Contrast(DIC) microscopy. Differential Interference Contrast(DIC) microscopy was an image processing method that was usually used to enhance the contrast between transparent specimens and background. According to its principle, it may be also apply to three-dimensional topography measurement of transparent objects. But as a profile measurement technique, it is important in the integration process, so we propose a quantitative phase restoration method, called Modified Fourier Phase Integration(MFPI), that depress the image noise effect. Next, we set an experiment to validate the integration method in reality and research the different optical path type: reflected and transmitted DIC. Finally, we construct a three-dimensional topography measurement equipment of transparent object.

參考文獻


[4] Bharat Bhushan, James C. Wyant, John Meiling, “A New Three-Dimensional Non-Contact Digital Optical Profiler ,” Wear, Vol. 122, pp.301-312 (1988).
[8] Douglas B. Murphy, “Fundamentals of Light Microscopy and Electronic Imaging,” Wiley, pp. 153-168 (2003).
[9] Rainer Danz and Peter Gretscher, “C–DIC: a new microscopy method for rational study of phase structures in incident light arrangement,” Thin Solid Films, Vol. 462-463, pp.257-262 (2004).
[10] M. Shribak and S. Inoué, “Orientation-independent differential interference contrast microscopy,” Apt. Opt., Vol.45, pp.460-469 (2006).
[11] M. Shribak, “Orientation-independent differential interference contrast microscopy technique and device,” U.S. patent application 2005-0152030 (2005/7/14).

被引用紀錄


王昱珽(2014)。應用浸潤式差分干涉顯微術於特定形貌之透明待測物量測〔碩士論文,國立清華大學〕。華藝線上圖書館。https://doi.org/10.6843/NTHU.2014.00195
劉濬嘉(2010)。應用差分干涉對比術於微米級透明材質的高度量測方法〔碩士論文,國立清華大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0016-0211201015592636
陳偉倫(2011)。探討待測物表面形貌對於差分干涉對比術量測的影響〔碩士論文,國立清華大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0016-1908201112580050
林文泉(2012)。二步相移式差分干涉對比顯微術應用於三維形貌高速量測〔碩士論文,國立清華大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0016-2002201315102547
徐意晴(2013)。探討差分干涉顯微術量測特定形狀的透明待測物之表面形貌〔碩士論文,國立清華大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0016-2511201311313294

延伸閱讀