透過您的圖書館登入
IP:18.217.108.11
  • 學位論文

上閘極單壁奈米碳管場效電晶體之研究

指導教授 : 戴念華
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


通常單壁奈米碳管成長方向為垂直金屬催化劑表面,因此吾人在催化劑表面上再濺鍍一層鋁層,而此一鋁膜也有效地抑制單壁奈米碳管的垂直成長。另一方面,控制區塊間距和區塊的形狀兩種關鍵參數,能成長出單根跨接碳管的單元。 對已經完成跨接的單元進行電流-電壓曲線量測,可以確認跨接碳管的電學性質。有些單元表現線性的電流-電壓曲線,為金屬性的跨接單壁奈米碳管;而其他單元則是顯示非線性的曲線,在偏壓為零附近有一無電流區域。藉由結合原處成長單壁奈米碳管方式和黃光微影技術,吾人製作出可單一操作的上閘極單壁奈米碳管場效電晶體,同時也發現在不同能隙大小的單壁奈米碳管通道之元件,可以表現出廣義p型及雙極性場效電晶體兩種不一樣的性質。總而言之,成功操作上閘極結構為核心的元件,使得單壁奈米碳管可以更接近積體電路的運用。

並列摘要


Generally single wall carbon nanotubes (SWNTs) grow in the vertical direction on the catalytic metal plane. Therefore we deposited an Al layer of 10 nm on the catalytic layer by sputtering. The Al layer plays the role of a barrier to prevent vertical growth of the SWNTs effectively. In addition, the size of the gap between the pads and the sharp of the pads are the key parameters for determining the chemical vapor deposition (CVD) growth duration for successfully bridging the pads by individual SWNT. To determine the electric properties of the SWNTs contacts, detailed current-voltage (I-V) measurements were performed on sample with the different SWNT connections. Some I-V curves are linear, suggesting metallic behavior; others exhibit nonlinear and a low conductance region develops around V=0. By combining the advantages of in-situ carbon nanotube growth technology and the lithography technology, we have realized the top-gate single wall nanotubes field effect transistors (SWNT-FETs) with individual device operation. We have succeeded in observing ambipolar and generalized p-type transistor operation in variable band gap semiconducting SWNT channels. In summary, the results indicates that the top-gate structure can be operated and demonstrate the potential of SWNT for the future complementary electronic.

並列關鍵字

無資料

參考文獻


1.S. Iijima, “Helical microtubules of graphitic carbon”, Nature, 354, 56, (1991).
3.J. H. Schon, Ch. Kloc, and B. Batlogg, High Temperature Super conductivity in Lattice-Expanded C60, Science 293, 2432 (2001).
4.M. S. Dresseelhaus, G. Dresseelhaus, and R. Saito, “Physics of carbon nanotubes”, Carbon, 33, 883 (1995).
5.Carbon Nanotubes and Related Structures-new materials for the twenty-first century, Peter J. F. Harris, Department of Chemisty, University of Reading.
6.D. L. Carroll, Ph. Redlich, X. Blase, J.-C. Charlier, S. Curran, P. M. Ajayan, S. Roth, and M. Rühle, “Effects of Nanodomain Formation on the Electronic Structure of Doped Carbon Nanotubes”, Physical Review Letters 81, 2332 (1998).

被引用紀錄


林坤賢(2008)。製程參數及電場效應對於成長單壁奈米碳管影響之研究〔碩士論文,國立清華大學〕。華藝線上圖書館。https://doi.org/10.6843/NTHU.2008.00489

延伸閱讀