透過您的圖書館登入
IP:3.144.86.121
  • 學位論文

彈性3D成形技術幾何資料處理軟體開發

Geometric Data Processing Software Development for the Freeform Additive Manufacturing

指導教授 : 曹哲之

摘要


本研究的目的是發展「彈性3D成形技術」的幾何資料處理軟體,此技術的主要特徵為沿三維物件表面切線方向成形,藉此提升成品的表面平整度,以及佈料寬度的調變,依據製件的不同區域改變成形寬度,藉此提升成形速度;而其幾何資料處理流程的特徵為將模型拆解為構型幾何之概念,所謂構形幾何包含帶狀、線狀、點狀等體積,可以用以重新組合3D物件,根據此概念,可以將現行FDM視為採用層層堆疊的點、線重新組合模型,而彈性3D成形的特色在於可變方向、可變寬度的帶狀幾何,本研究將以多個模型為例,說明將3D模型表面拆解成帶狀幾何的方法,並根據帶狀幾何進行佈料路徑規劃,再將佈料路徑後處理,轉換為機台控制器實際讀取的數值控制碼,另外本研究亦將前述演算法與投影演算法結合,產生貼於彎曲表面上的適形列印佈料路徑,最後以模擬系統以及實驗驗證本研究的正確性和可行性。

並列摘要


This research aims at developing geometric data processing software for the Freeform Additive Manufacturing (FAM). The major features of the FAM technology are vari-directional material deposition along the tangential directions of part surface which gives surface smoothness and vari-dimensional material deposition according to need of local geometry to increase build rate. The main concept of the geometric data processing is to disassemble a 3d model into Component Geometries. The Component Geometries have at least three basic geometric forms, including geometric volumes of bands (ribbons), wires (lines) and dots (points), which can be assembled into any 3D model. If using only wires and dots in a horizontally layered assembly structure, the FAM method is similar to the FDM technique. The distinguishing characteristic of FAM is the vari-directional and vari-dimensional ribbon geometry. This research focuses on the procedure of generation of ribbon-shaped geometries from surfaces of a 3D model, the planning of material dispensing path to form the ribbon-shaped geometries and the conversion of the dispensing path into NC code by post-processing. In addition to forming 3D objects, conformal printing of 2D patterns on a 3D surface was also developed by combining the above geometric processing algorithm with a projection algorithm. Simulations and experiments using multiple models were conducted to verify the validity and feasibility of the developed algorithm.

參考文獻


[1] Anonymous (2012), “The Third Industrial Revolution”, The Economist
[2] Tsao, C. C. et al. (2018), “Freeform Additive Manufacturing by vari-directional vari-dimensional material deposition”, Rapid Prototyping Journal, Vol. 24, No. 5, pp. 379-394
[3] 張禾炘,《彈性變向佈料高速3D成形技術:熱塑型塑膠佈料系統與製程開發》,國立清華大學動力機械工程學系碩士論文,2016
[4] 周佾霖,《彈性變向佈料高速3D成形技術:金屬材料之佈料系統與製程開發》,國立清華大學動力機械工程學系碩士論文,2016
[5] 曹哲之,科技部專題研究計畫書「彈性變向佈料高速3D成形技術」計畫編號MOST 103-2218-E-007-011,2014 (未公開文件)。

延伸閱讀