透過您的圖書館登入
IP:18.220.13.70
  • 學位論文

應用於W-band之低雜訊放大器

Low-Noise Amplifiers for W-Band Applications

指導教授 : 徐碩鴻 陳新
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


於此論文中,主要將探討二個針對W頻段通訊系統應用低雜訊放大器之設計、模擬與量測。 在W-band 之無源毫米波(PMMW)頻段,我們提出一個實作在90nm CMOS製程使用 型變壓器和 T 型變壓器技術的94GHz低雜訊法大器(94GHz LNA with and T transformers),藉由使用型變壓器技術雜訊將會被有效地抑制,同時輸入端的阻抗頻寬也會增加。另外 型變壓器技術被使用以便於減少來自閘極電感之串聯電阻的損耗,提昇了此低雜訊放大器的性能。這個低雜訊放大器完成了15.8dB的功率增益、6.8dB的雜訊指數以及適中的35mW功耗。另一個為了防撞雷達及無源毫米波之W 頻段應用的低雜訊放大器(擁有耦合共振腔的W 頻段低雜訊放大器)也被實作在90nm製程。比較先前研究皆以T型匹配網路設計W頻帶低雜訊放大器,本研究提出耦合共振腔之新型匹配網路提供了寬的負載(loading)以便於得到寬的頻寬。另外, 型變壓器技術被採用以便於改善此低雜訊放大器的整體雜訊性能,並且也在輸出端使用T-coil技術去改善輸出端頻寬。這個低雜訊放大器在45mW的功率消耗下完成了11. 87dB的功率增益、7.1dB的雜訊指數。應該被強調的是此低雜訊放大器展現了從77.5GHz到101.5GHz之高達24GHz 3dB頻寬。另外在此論文中的兩個放大器皆使用了MMIN(最小的雜訊)技術去最佳化兩個電路的特性,並且採用了搭配基底耦合共地面波導匹配網路(GCPW-PGS) 讓兩個電路的信號損失及基底損耗降到最小。

並列摘要


In this thesis, two low-noise amplifiers for W-band (75-110GHz) applications are discussed regarding their design, simulation, and measurement. For the passive millimeter wave imaging (PMMW) at W-band, we propose a 94GHz LNA with and T transformers implemented in 90-nm CMOS process. By utilizing the  transformer technique, the noise can be effectively suppressed; also, the input matching bandwidth can be enhanced as well. In addition, the T transformer technique is employed to reduce the loss from the series resistor in gate inductor, enhancing the performance of the LNA. The LNA achieves the power gain of 15.8dB, a minimum noise figure of 6.8 dB and moderate power consumption of 35 mW. Another LNA, a W-band LNA with coupled resonators, is also implemented in 90-nm CMOS process for W-band applications such as anti-collision radar and passive imaging. Compared with previous studies, mostly using the T matching network for W-band LNA design, this LNA proposes new coupled resonator matching network to obtain a wide 3dB bandwidth due to the provided wideband loading. Furthermore, the  transformer technique is adopted to improve the overall noise performance of the LNA. The LNA achieves the power gain of 11.87dB, a minimum noise figure of 7.1 dB under a power consumption of 45 mW. It should be emphasized that the LNA obtains a very wide 3dB-bandwidth up to 24 GHz from 77.5GHz to 101.5GHz. In addition, both amplifiers use the minimum noise measure MMIN technique to optimize their performance and adopt grounded-coplanar waveguide (GCPW) structure with PGS for their minimizing signal and substrate loss.

並列關鍵字

LNA W-band pi transformer T transformer coulped resonator

參考文獻


[1] A.Y.-K. Chen, Y. Baeyens, Young-Kai Chen, and Jenshan Lin, “A low-power linear SiGe BiCMOS low-noise amplifier for millimeter-wave active imaging,” IEEE Microw. Wireless Compon. Lett., vol. 20, pp.103-105, 2010.
[2] R. Reuter and Yi Yin, “A 77 GHz (W-band) SiGe LNA with a 6.2 dB noise figure and gain adjustable to 33 dB,” Bipolar/BiCMOS Circuits and Technology Meeting, pp.1-4, 2006.
[5] L. Yujiri, M. Shoucri, and P. Moffa, “Passive millimeter-wave imaging,” IEEE Microwave Magazine, vol. 4, pp. 39-50, Sep. 2003
[6] L. Gilreath et al., “A 94-GHz Passive imaging receiver using a balanced LNA with embedded Dicke switch,”IEEE RFIC, May 2010, pp. 79–82.
[7] B. Heydari, M. Bohsali, E. Adabi, and A.M. Niknejad, “Millimeter-wave devices and circuit blocks up to 104 GHz in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 42, 2007.

延伸閱讀