透過您的圖書館登入
IP:3.145.47.253
  • 學位論文

具G2V/V2G及能源收集功能之變壓直流鏈供電電動車開關式磁阻馬達驅動系統

VARIED-VOLTAGE DC-LINK FED EV SWITCHED-RELUCTANCE MOTOR DRIVE WITH G2V/V2G AND ENERGY HARVESTING CAPABILITIES

指導教授 : 廖聰明

摘要


本論文旨在開發具電網至車輛、車輛至電網及能源收集功能之電池/超電容供電電動車開關式磁阻馬達驅動系統。其直流鏈電壓由電池經全橋式直流/直流轉換器建立。由於所用轉換器之電壓轉換彈性,直流鏈電壓可高於和低於電池電壓,改善了廣速度範圍下之能量轉換效率。超電容經一雙向升/降壓直流/直流轉換器介接至直流鏈,可有效降低電池變動之充/放電電流。在電動車馬達驅動控制方面,除電力電路外,亦妥善設計換相設定與移位、動態電流及速度控制機構,獲得良好之操作特性。再者,由於介面轉換器建立之升壓直流鏈,進一步提升高速及/或高載下之性能。 在電動車閒置聯網下,利用所外加之雙向三相變頻器及交錯式CLLC諧振轉換器,可施行電網至車輛、車輛至電網及車輛至家庭等操作,其中,電氣隔離係由諧振轉換器所提供。在電網至車輛操作模式,車載電池可由單相或三相市電進行充電,具良好之電力品質。至於車輛至電網及車輛至家庭操作模式,變頻器產出之單相或三相交流電,供給家用負載或回送預設功率至電網。 所開發之能源收集系統具有兩種機構,即為太陽光伏能源收集器及插入式能源收集器。前者,屋頂之太陽光伏透過車上具有之全橋式轉換器形成升壓直流/直流轉換器,直接對車載電池充電。至於後者,以三相維也納切換式整流器作為基礎架構,可接受三相交流、單相交流與直流源對電池進行輔助充電。

並列摘要


This thesis develops a battery/super-capacitor (SC) powered electric vehicle (EV) switched-reluctance motor (SRM) drive with grid-to-vehicle (G2V)/vehicle-to-grid (V2G) and energy harvesting functions. The motor drive DC-link voltage is established by the battery via an H-bridge DC/DC converter. Thanks to the voltage transfer flexibility of the adopted converter, the DC-link voltage can be higher and lower than the battery voltage to improve the energy conversion efficiency over wide speed range. The SC is connected to the DC-link via a bidirectional boost/buck DC/DC converter. The battery fluctuated charging and discharging currents can be efficiency reduced. In EV motor driving control, in addition to the power circuit, the commutation setting and shifting, the dynamic current and speed control schemes are all properly designed to yield satisfactory operation characteristics. Moreover, the boosted DC-link voltage provided by the interface converter further enhances the performances under high speeds and/or heavier loads. In the idle EV grid-connected case, the externally added three-phase inverter and interleaved CLLC resonant converter are arranged to conduct the G2V/V2G/V2H operations. The galvanic isolation is provided by the CLLC converter. In G2V operation, the EV battery can be charged from the single-phase or three-phase mains with good line drawn power quality. As to the V2G/V2H operations, the single-phase or three-phase AC output voltage is generated to power the home appliances or send the preset power back to the utility grid. In the developed energy harvesting system (EHS), two schemes are arranged, namely, the photovoltaic (PV) energy harvester and the plug-in energy harvester. For the former, the house roof photovoltaic (PV) can directly charge the EV battery via a boost DC/DC converter formed by the EV embedded H-bridge converter. As to the latter, a three-phase Vienna SMR is used as an infrastructural schematic, the auxiliary charging can be conducted from the accessible three-phase AC, single-phase AC, or DC source.

參考文獻


[1] M. Zeraoulia, M. E. H. Benbouzid, and D. Diallo, “Electric motor drive selection issues for HEV propulsion systems: a comparative study,” IEEE Trans. Veh. Technol., vol. 55, no. 6, pp. 1756-1764, 2006.
[2] C. C. Chan, A. Bouscayrol, and K. Chen, “Electric, hybrid, and fuel-cell vehicles: architectures and modeling,” IEEE Trans. Veh. Technol., vol. 59, no. 2, pp. 589-598, 2010.
[3] S. G. Wirasingha and A. Emadi, “Classification and review of control strategies for plug-in hybrid electric vehicles,” IEEE Trans. Veh. Technol., vol. 60, no. 1, pp. 111-122, 2011.
[4] Z. Yang, F. Shang, I. P. Brown, and M. Krishnamurthy, “Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for EV and HEV applications,” IEEE Trans. Transport. Electrific., vol. 1, no. 3, pp. 245-254, 2015.
[5] S. S. Williamson, A. K. Rathore, and F. Musavi, “Industrial electronics for electric transportation: current state-of-the-art and future challenges,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3021-3032, 2015.

延伸閱讀