超音波馬達是具有壓電陶瓷致動器的驅動裝置,其共振器(Resonator)係利用壓電陶瓷產生於超音波範圍的振動來驅動。另外,在共振器的設計方面,探討二次拋物曲線外型的變化對共振器之影響,並針對接觸轉子時產生的功率作比較,期能達到較高之效率,求其最佳化的二次拋物曲線外型,期能藉由外型的最佳化設計達到較高之效率及降低製造成本。在理論與數值模擬方面,引用Hamilton’s Principle 及幾何拘束條件有系統的推導動態系統的統御方程式,再利用有限元素法(Finite Element Method)的數值分析來模擬統御方程式。而最佳化設計方面,則是利用田口方法(Taguchi Experimental Design Method) 來選定一個較適合的外型。另外,關於接觸力學部份,由於定子與轉子相互接觸時,接觸面上的應力常造成構件損壞。因此,接觸的行為,即為機械設計時必須獲知的重要訊息。經模擬的結果,發現外型的變化會影響共振器端點軸向和縱向位移和接觸力。 對兩個壓電陶瓷之間長度的比例作靈敏度分析,可以預測到一個極為精準的變形量。
This paper presents optimum design of the bimodal ultrasonic motor by using Taguchi experimental design method. The ultrasonic motor uses the piezoelectrically excited mechanical oscillations of a resonator to drive a rotor. The resonator is stimulated by piezoelectric ceramics to produce oscillations with frequencies in the ultrasonic region. The effect of a quadratic parabolic curve shape of the resonator is also studied for the resonator design, and aim at the power to find the optimum design. The extended Hamilton’s principle is used for formulation and the finite element method is used to approximate the governing equations for numerical simulation. The Lagrange multiplier method is used to treat the contact problem. The Taguchi experimental design method is applied to decrease the experimental times and find optimal designs. From the simulation results, it is found that the shape of the resonator is a important factor, which affects the contact power.