透過您的圖書館登入
IP:18.119.118.99
  • 學位論文

磷化銦鎵有機金屬化學氣相磊晶薄膜 之特性研究與應用

Characterizations and applications of InGaP Films Grown by Metal Organic Chemical Vapor Deposition

指導教授 : 溫武義 籃山明
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本實驗採用自組式常壓化學氣相沉積法成長系統 (AP-MOCVD), 分別摻雜矽(Si)和鋅(Zn)於磷化銦鎵 (InGaP) 磊晶層成長在砷化鎵(GaAs)基板上,並應用摻雜鋅於磷化銦鎵中製造太陽能電池。以C-V量測來決定摻雜的電子和電洞濃度。在室溫時,分別對n型載子濃度範圍從1x1017到2x1018 cm-3,及對p型載子濃度範圍從9x1016到1x1019 cm-3 。並藉由X光繞射量測可計算其組成比。在低溫光激螢光量測表現出摻雜矽和鋅的變化關係。 為了得到較好的磷化銦鎵與砷化鎵晶體結構,適當的五族氣體切換扮演著一重要角色。事實上,磷化銦鎵與砷化鎵的異質接面品質嚴重地受到氣體切換條件所影響。藉由氣體切換最佳化,可在磷化銦鎵與砷化鎵之間的到較平坦的界面。我們在此利用氣體轉換及鋅摻雜的磷化鎵銦層濃度在1-2x1018 cm-3作為一太陽能電池的窗層。最後製作出一個單一接面的太陽能電池,轉換效率為17%。

並列摘要


In0.5Ga0.5P epitaxial layers doped with Si and Zn were grown on GaAs (100) substrates by atmospheric pressure metalorganic chemical vapor deposition (AP-MOCVD) and solar cells using Zn-doped InGaP layer as the window layer were also fabricated. The electrical and hole concentration of doped layers were determined by C-V measurement. Room temperature carrier concentration ranging from 1x1017 to 2x1018 cm-3 and from 9x1016 to 1x1019 cm-3 for n-type and p-type In0.5Ga0.5P were obtained, respectively. The compositional analysis was carried out by the high resolution X-ray diffraction (HRXRD). The 17K photoluminescence measurements were used to recognize the doping effects of Si and Zn in In0.5Ga0.5P epitaxial layers. To establish a better InGaP/GaAs heterostucture, the proper switching of group V source (As and P) was found to play an important role. The quality of the heterojunction formed by InGaP and GaAs was well controlled by a careful control of the switching condition of As and P fluxes. Smooth interface between InGaP and GaAs was obtained after the optimization of switching conditions. Finally we used the Zn-doped InGaP layer demonstrating a carrier concentration of 1-2x1018 cm-3 as the window layer for our InGaP solar cell. A single junction InGaP solar cell with the energy conversion efficiency of 17 % was achieved.

並列關鍵字

InGaP MOCVD Solar Cells

參考文獻


[1] Jongwon Lee, Thin Solid Films 320 (1998) 173-178.
[2] I. T. Yoon, T. S. Ji and H. L. park, Solid State communications, Vol. 103, No. 1, pp. 49-54, 1997.
[5] T. Ota, S. Otake, I. Iwasa, J. Crystal Growth 133 (1993) 207.
[12] B. R. Pamplin, “Crystal Growth” second edition (1979)
[17] Shiny-yi Chou, “ Characterizations of ZnTe Bulks Grown By Temperature Gradient Solution Growth ” p.29.

被引用紀錄


Cheng, Y. W. (2004). 砷化鎵及磷化銦鎵單接面太陽電池後磊晶製程之研究 [master's thesis, Chung Yuan Christian University]. Airiti Library. https://doi.org/10.6840/cycu200400114

延伸閱讀