透過您的圖書館登入
IP:3.22.166.151
  • 學位論文

利用數值模式探討多段式有機溶劑奈米過濾薄膜分離效應

Numerical simulation of Organic Solvent Nanofiltration (OSN) membrane separation performance in multiple stage cascades

指導教授 : 鄧志浩

摘要


本研究以數值模擬探討單、多段式薄膜過濾分離效應,以整體模組的物質守恆為基礎,並且以一階微分方程式進行了模擬,模擬過程中利用有機溶劑奈米過濾薄膜(OSN) 對溶質的去除率、溶質初始濃度、及物質守恆定理,分別求出各階段、不同流之濃度,最後求出各溶質的純度與產率並進行探討,以MATLAB作為進行模擬求解的數值軟體。   本研究建立了完整的模式,以前人實驗數據加以驗證,進而研究不同操作條件中雙溶質之間之去除率、純度及產率變化之關係,其操作條件包含滲透通量、進流槽體積及不同薄膜之選擇等,針對多階段薄膜過濾程序進行探討與分析,再找出較具效益之薄膜過濾操作程序與操作條件,並希望此模式可應用在不同溶質與薄膜之薄膜程序,欲數值模擬出的結果可提供各工業領域作為參考依據。   最後的結果我們發現在改變不同操作條件中,雙段式OSN薄膜過濾程序所得到產物之濃度、產率在穩定後皆會比單段式OSN薄膜過濾程序高,其原因在於雙段式OSN薄膜過濾程序中第二薄膜單元之滲透流會回流到第一單元與稀釋溶劑共同維持進流槽體積,溶質分離之效率也較高。

並列摘要


This research studied the numerical simulation of membrane separation performance in multiple stage cascades. A whole module was based on mass balance and simulated with software MATLAB for first-order differential equations. The concentration, purity and yield in each stage by using the rejection of solute for organic solvent nanofiltration membrane were studied.   In this research a complete model according to the set up conditions was verified by previous experimental data and shown in good agreement. For various operating conditions such as average permeate flux, volume of feed reservoir, rejection of solutes and the effective membrane area, we discussed and analyzed for multi-stage membrane filtration procedures, and then find the efficient of membrane filtration operating procedures and operating conditions for the rejection, purity and yield of each solute.   We found that both concentration and yield of product in two-stage OSN membrane process are higher than those in single stage, because the two-stage membrane filtration process of the second membrane unit will feedback to the permeate stream of first membrane unit to maintain the volume of first feed reservoir with dilution solvents. In two-stage process, the efficiency of solute separation is also higher than that in single stage.   From this research, we hope the model can be applied in membrane separation process of different solutes and membranes, and the numerical simulation results can provide a reference for various industrial applications.

參考文獻


1. Caus, A., Braeken L., Boussua K. and Bruggena, B. V. der, (2009), “The use of integrated countercurrent nanofiltration cascades for advanced separations”, J Chem Technol. Biotechnol; 84: 391–398.
2. Cross, R. A., (2002), “Optimum process designs for ultrafiltration and crossflow microfiltration systems”, Desalination 145, 159-163.
3. Fikara, M., Kovácsb, Z. and Czermakb, P., (2010), “Dynamic optimization of batch diafiltration processes”, J. Membr. Sci. 355, 168–174.
4. Foley, G., (1999), “Minimisation of process time in ultrafiltration and continuousdiafiltration: the effect of incomplete macrosolute rejection”, Journal of Membrane Science 163 349–355.
6. Jaffrin, M. and Charrier, J., (1994), “Optimization of ultrafiltration and diafiltration processes for albumin production”, J. Membr. Sci. 97, 71–81.

延伸閱讀